Oracle Database 11g: Advanced
PL/SQL

Volume | » Student Guide

D52601GC20
Edition 2.0
September 2010
D66095

ORACLE

Author

Tulika Srivastava

Technical Contributors and
Reviewers

Maria Bilings
Laszlo Czinkoczki
Todd Bao

Claire Bennett
Yanti Chang

Ken Cooper
Francesco Ferla
Nancy Greenberg
Rick Green

Laura Garza

Bryn Llewelyn
Timothy McGlue
Essi Parast
Nagavalli Pataballa
Alan Paulson
Surya Rekha
Lauran Serhal
Clinton Shaffer
Anjulaponni Azhagulekshmi Sub
Jenny Tsai

Ted Witiuk
Marcie Young

Jin Zhang

Editors
Daniel Milne

Raj Kumar

Graphic Designer
Asha Thampy

Publishers
Sujatha Nagendra

Veena Narasimhan

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government's rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Contents

Preface

1 Introduction
Course Objectives 1-2
Lesson Agenda 1-3
Course Agenda 1-4
Appendixes Used in This Course 1-6
Lesson Agenda 1-7
Development Environments: Overview 1-8
What Is Oracle SQL Developer? 1-9
Coding PL/SQL in SQL*Plus 1-10
Lesson Agenda 1-11
Tables Used in This Course 1-12
The Order Entry Schema 1-13
The Human Resources Schema 1-15
Oracle 11g SQL and PL/SQL Documentation 1-16
Summary 1-17
Practice 1 Overview: Getting Started 1-18

2 PL/SQL Programming Concepts: Review
Objectives 2-2
Lesson Agenda 2-3
PL/SQL Block Structure 2-4
Naming Conventions 2-5
Procedures 2-6
Procedure: Example 2-7
Stored Functions 2-8
Function: Example 2-9
Ways to Execute Functions 2-10
Lesson Agenda 2-11
Restrictions on Calling Functions from SQL Expressions 2-12
Lesson Agenda 2-14
PL/SQL Packages: Review 2-15
Components of a PL/SQL Package 2-16
Creating the Package Specification 2-17

Creating the Package Body 2-18

Lesson Agenda 2-19

Cursor 2-20

Processing Explicit Cursors 2-22

Explicit Cursor Attributes 2-23

Cursor FOR Loops 2-24

Cursor: Example 2-25

Lesson Agenda 2-26

Handling Exceptions 2-27

Exceptions: Example 2-29

Predefined Oracle Server Errors 2-30

Trapping Non-Predefined Oracle Server Errors 2-33
Trapping User-Defined Exceptions 2-34

Lesson Agenda 2-35

The RAISE_APPLICATION_ERROR Procedure 2-36
Lesson Agenda 2-38

Dependencies 2-39

Displaying Direct and Indirect Dependencies 2-41
Lesson Agenda 2-42

Using Oracle-Supplied Packages 2-43

Some of the Oracle-Supplied Packages 2-44
DBMS_OUTPUT Package 2-45

UTL_FILE Package 2-46

Summary 2-47

Practice 2: Overview 2-48

Designing PL/SQL Code

Objectives 3-2

Lesson Agenda 3-3

Guidelines for Cursor Design 3-4

Lesson Agenda 3-9

Cursor Variables: Overview 3-10

Working with Cursor Variables 3-11

Strong Versus Weak REF CURSOR Variables 3-12
Step 1: Defining a REF CURSOR Type 3-13

Step 1: Declaring a Cursor Variable 3-14

Step 1: Declaring a REF CURSOR Return Type 3-15
Step 2: Opening a Cursor Variable 3-16

Step 3: Fetching from a Cursor Variable 3-18
Step 4: Closing a Cursor Variable 3-19

Passing Cursor Variables as Arguments 3-20
Using the SYS_REFCURSOR Predefined Type 3-23
Rules for Cursor Variables 3-25

Comparing Cursor Variables with Static Cursors 3-26
Lesson Agenda 3-27

Predefined PL/SQL Data Types 3-28

Subtypes: Overview 3-29

Benefits of Subtypes 3-31

Declaring Subtypes 3-32

Using Subtypes 3-33

Subtype Compatibility 3-34

Quiz 3-35

Summary 3-38

Practice 3: Overview 3-39

Working with Collections

Objectives 4-2

Lesson Agenda 4-3

Understanding Collections 4-4
Collection Types 4-5

Lesson Agenda 4-7

Using Associative Arrays 4-8
Creating the Array 4-10

Traversing the Array 4-11

Lesson Agenda 4-13

Using Nested Tables 4-14

Nested Table Storage 4-15

Creating Nested Tables 4-16
Declaring Collections: Nested Table 4-17
Using Nested Tables 4-18
Referencing Collection Elements 4-20
Using Nested Tables in PL/SQL 4-21
Lesson Agenda 4-23

Understanding Varrays 4-24
Declaring Collections: Varray 4-25
Using Varrays 4-26

Lesson Agenda 4-28

Working with Collections in PL/SQL 4-29
Initializing Collections 4-32
Referencing Collection Elements 4-34
Using Collection Methods 4-35

Manipulating Individual Elements 4-39

Lesson Agenda 4-41

Avoiding Collection Exceptions 4-42

Avoiding Collection Exceptions: Example 4-43
Lesson Agenda 4-44

Listing Characteristics for Collections 4-45
Guidelines for Using Collections Effectively 4-46
Quiz 4-47

Summary 4-51

Practice 4: Overview 4-52

Manipulating Large Objects

Objectives 5-2

Lesson Agenda 5-3

What Is a LOB? 5-4

Components of a LOB 5-6

Internal LOBs 5-7

Managing Internal LOBs 5-8

Lesson Agenda 5-9

What Are BFILES? 5-10

Securing BFILEs 5-11

What Is a DIRECTORY? 5-12

Using the DBMS_LOB Package 5-13
DBMS_LOB.READ and DBMS_LOB._WRITE 5-14
Managing BFILEs 5-15

Preparing to Use BFILEs 5-16

Populating BFILE Columns with SQL 5-17
Populating a BFILE Column with PL/SQL 5-18
Using DBMS_LOB Routines with BFILEs 5-19
Lesson Agenda 5-20

Initializing LOB Columns Added to a Table 5-21
Populating LOB Columns 5-23

Writing Datato a LOB 5-24

Reading LOBs from the Table 5-28

Updating LOB by Using DBMS_LOB in PL/SQL 5-30
Checking the Space Usage of a LOB Table 5-31
Selecting CLOB Values by Using SQL 5-33
Selecting CLOB Values by Using DBMS_LOB 5-34
Selecting CLOB Values in PL/SQL 5-35

Vi

Removing LOBs 5-36

Quiz 5-37

Lesson Agenda 5-40

Temporary LOBs 5-41

Creating a Temporary LOB 5-42

Lesson Agenda 5-43

SecureFile LOBs 5-44

Storage of SecureFile LOBs 5-45

Creating a SecureFile LOB 5-46

Comparing Performance 5-47

Enabling Deduplication and Compression 5-48
Enabling Deduplication and Compression: Example 5-49
Step 1: Checking Space Usage 5-50

Step 1: Checking Space Usage 5-52

Step 2: Enabling Deduplication and Compression 5-53
Step 3: Rechecking LOB Space Usage 5-54

Step 4: Reclaiming the Free Space 5-55

Using Encryption 5-56

Using Encryption: Example 5-58

Migrating from BasicFile to SecureFile Format 5-59
Quiz 5-62

Summary 5-65

Practice 5: Overview 5-66

Using Advanced Interface Methods

Objectives 6-2

Calling External Procedures from PL/SQL 6-3
Benefits of External Procedures 6-4

External C Procedure Components 6-5

How PL/SQL Calls a C External Procedure 6-6
The extproc Process 6-7

Development Steps for External C Procedures 6-8
The Call Specification 6-12

Publishing an External C Routine 6-15

Executing the External Procedure 6-16

Java: Overview 6-17

Calling a Java Class Method by Using PL/SQL 6-18
Development Steps for Java Class Methods 6-19
Loading Java Class Methods 6-20

Publishing a Java Class Method 6-21

Vii

Executing the Java Routine 6-23

Creating Packages for Java Class Methods 6-24
Quiz 6-25

Summary 6-28

Practice 6: Overview 6-29

Performance and Tuning

Objectives 7-1

Lesson Agenda 7-3

Native and Interpreted Compilation 7-4

Deciding on a Compilation Method 7-5

Setting the Compilation Method 7-6

Viewing the Compilation Settings 7-8

Setting Up a Database for Native Compilation 7-10
Compiling a Program Unit for Native Compilation 7-11
Lesson Agenda 7-12

Tuning PL/SQL Code 7-13

Avoiding Implicit Data Type Conversion 7-14
Understanding the NOT NULL Constraint 7-15
Using the PLS_INTEGER Data Type for Integers 7-16
Using the SIMPLE_INTEGER Data Type 7-17
Modularizing Your Code 7-18

Comparing SQL with PL/SQL 7-19

Using Bulk Binding 7-22

Using SAVE EXCEPTIONS 7-28

Handling FORALL Exceptions 7-29

Rephrasing Conditional Control Statements 7-30
Passing Data Between PL/SQL Programs 7-32
Lesson Agenda 7-35

Introducing Intraunit Inlining 7-36

Using Inlining 7-37

Inlining Concepts 7-38

Inlining: Example 7-41

Inlining: Guidelines 7-43

Quiz 7-44

Summary 7-47

Practice 7: Overview 7-48

viii

8 Improving Performance with Caching
Objectives 8-2
Lesson Agenda 8-3
What Is Result Caching? 8-4
Increasing Result Cache Memory Size 8-5
Setting Result_Cache_Max_Size 8-6
Enabling Query Result Cache 8-7
Using the DBMS_RESULT_CACHE Package 8-8
Lesson Agenda 8-9
SQL Query Result Cache 8-10
Clearing the Shared Pool and Result Cache 8-12
Examining the Memory Cache 8-13
Examining the Execution Plan for a Query 8-14
Examining Another Execution Plan 8-15
Executing Both Queries 8-17
Viewing Cache Results Created 8-18
Re-Executing Both Queries 8-19
Viewing Cache Results Found 8-20
Lesson Agenda 8-21
PL/SQL Function Result Cache 8-22
Marking PL/SQL Function Results to Be Cached 8-23
Clearing the Shared Pool and Result Cache 8-24
Lesson Agenda 8-25
Creating a PL/SQL Function Using the RESULT_CACHE Clause 8-26
Lesson Agenda 8-27
Calling the PL/SQL Function Inside a Query 8-28
Verifying Memory Allocation 8-29
Viewing Cache Results Created 8-30
Calling the PL/SQL Function Again 8-31
Viewing Cache Results Found 8-32
Confirming That the Cached Result Was Used 8-33
Quiz 8-34
Summary 8-38
Practice 8: Overview 8-39

9 Analyzing PL/SQL Code
Objectives 9-2
Lesson Agenda 9-3
Finding Coding Information 9-4

10

Using SQL Developer to Find Coding Information 9-9
Using DBMS_DESCRIBE 9-11

Using ALL_ARGUMENTS 9-14

Using SQL Developer to Report on Arguments 9-16
Using DBMS_UTILITY.FORMAT_CALL_STACK 9-18
Finding Error Information 9-20

Lesson Agenda 9-25

PL/Scope Concepts 9-26

Collecting PL/Scope Data 9-27

Using PL/Scope 9-28

The USER/ALL/DBA_IDENTIFIERS Catalog View 9-29
Sample Data for PL/Scope 9-30

Collecting Identifiers 9-32

Viewing ldentifier Information 9-33

Performing a Basic Identifier Search 9-35

Using USER_IDENTIFIERS to Find All Local Variables 9-36
Finding ldentifier Actions 9-37

Lesson Agenda 9-39

DBMS_METADATA Package 9-40

Metadata APl 9-41

Subprograms in DBMS_METADATA 9-42
FETCH_xxx Subprograms 9-43

SET_FILTER Procedure 9-44

Filters 9-45

Examples of Setting Filters 9-46

Programmatic Use: Example 1 9-47

Programmatic Use: Example 2 9-49

Browsing APIs 9-51

Browsing APIs: Examples 9-52

Quiz 9-54

Summary 9-57

Practice 9: Overview 9-58

Profiling and Tracing PL/SQL Code
Objectives 10-2

Lesson Agenda 10-3

Tracing PL/SQL Execution 10-4

Tracing PL/SQL: Steps 10-7

Step 1: Enable Specific Subprograms 10-8

11

Steps 2 and 3: Identify a Trace Level and Start Tracing 10-9

Step 4: Turn Off Tracing 10-10

Step 5: Examine the Trace Information 10-11

plsql_trace_runs and plsgl_trace_events 10-12

Lesson Agenda 10-14

Hierarchical Profiling Concepts 10-15

Using the PL/SQL Profiler 10-17

Understanding Raw Profiler Data 10-21

Using the Hierarchical Profiler Tables 10-22

Using DBMS_HPROF.ANALYZE 10-23

Using DBMS_HPROF . ANALYZE to Write to Hierarchical Profiler Tables 10-24
Analyzer Output from the DBMSHP_RUNS Table 10-25

Analyzer Output from the DBMSHP_FUNCTION__INFO Table 10-26
plshprof: A Simple HTML Report Generator 10-27

Using plshprof 10-28

Using the HTML Reports 10-31

Quiz 10-35

Summary 10-38

Practice 10: Overview 10-39

Implementing Fine-Grained Access Control for VPD
Objectives 11-2

Lesson Agenda 11-3

Fine-Grained Access Control: Overview 11-4
Identifying Fine-Grained Access Features 11-5
How Fine-Grained Access Works 11-6

Why Use Fine-Grained Access? 11-8

Lesson Agenda 11-9

Using an Application Context 11-10

Creating an Application Context 11-12

Setting a Context 11-13

Implementing a Policy 11-15

Step 2: Creating the Package 11-16

Step 3: Defining the Policy 11-18

Step 4. Setting Up a Logon Trigger 11-21
Example Results 11-22

Data Dictionary Views 11-23

Using the ALL_CONTEXT Dictionary View 11-24
Policy Groups 11-25

More About Policies 11-26

Xi

12

Quiz 11-28
Summary 11-31
Practice 11: Overview 11-32

Safeguarding Your Code Against SQL Injection Attacks
Objectives 12-2

Lesson Agenda 12-3

Understanding SQL Injection 12-4

Identifying Types of SQL Injection Attacks 12-5
SQL Injection: Example 12-6

Assessing Vulnerability 12-7

Avoidance Strategies Against SQL Injection 12-8
Protecting Against SQL Injection: Example 12-9
Lesson Agenda 12-10

Reducing the Attack Surface 12-11

Expose the Database Only Via PL/SQL APl 12-12
Using Invoker's Rights 12-13

Reducing Arbitrary Inputs 12-15

Strengthen Database Security 12-16

Lesson Agenda 12-17

Using Static SQL 12-18

Using Dynamic SQL 12-21

Lesson Agenda 12-22

Using Bind Arguments with Dynamic SQL 12-23
Using Bind Arguments with Dynamic PL/SQL 12-24
What If You Cannot Use Bind Arguments? 12-25
Lesson Agenda 12-26

Understanding DBMS_ASSERT 12-27

Formatting Oracle Identifiers 12-28

Working with Identifiers in Dynamic SQL 12-29
Choosing a Verification Route 12-30

Avoiding Injection by Using DBMS_ASSERT .ENQUOTE_LITERAL 12-31
Avoiding Injection by Using DBMS_ASSERT .SIMPLE_SQL_NAME 12-34
DBMS_ASSERT Guidelines 12-36

Lesson Agenda 12-39

Using Bind Arguments 12-40

Avoiding Privilege Escalation 12-41

Beware of Filter Parameters 12-42

Trapping and Handling Exceptions 12-43

Lesson Agenda 12-44

Xii

Coding Review and Testing Strategy 12-45
Reviewing Code 12-46

Running Static Code Analysis 12-47
Testing with Fuzzing Tools 12-48
Generating Test Cases 12-49

Quiz 12-51

Summary 12-55

Practice 12: Overview 12-56

Appendix A: Practices and Solutions
Appendix B: Table Descriptions and Data

Appendix C: Using SQL Developer
Objectives C-2
What Is Oracle SQL Developer? C-3
Specifications of SQL Developer C-4
SQL Developer 1.5 Interface C-5
Creating a Database Connection C-7
Browsing Database Objects C-10
Displaying the Table Structure C-11
Browsing Files C-12
Creating a Schema Object C-13
Creating a New Table: Example C-14
Using the SQL Worksheet C-15
Executing SQL Statements C-18
Saving SQL Scripts C-19
Executing Saved Script Files: Method 1 C-20
Executing Saved Script Files: Method 2 C-21
Formatting the SQL Code C-22
Using Snippets C-23
Using Snippets: Example C-24
Debugging Procedures and Functions C-25
Database Reporting C-26
Creating a User-Defined Report C-27
Search Engines and External Tools C-28
Setting Preferences C-29
Resetting the SQL Developer Layout C-30
Summary C-31

Xiii

Appendix D: Using SQL*Plus
Objectives D-2
SQL and SQL*Plus Interaction D-3
SQL Statements Versus SQL*Plus Commands D-4
Overview of SQL*Plus D-5
Logging In to SQL*Plus D-6
Displaying the Table Structure D-7
SQL*Plus Editing Commands D-9
Using LIST, n, and APPEND D-11
Using the CHANGE Command D-12
SQL*Plus File Commands D-13
Using the SAVE and START Commands D-14
SERVEROUTPUT Command D-15
Using the SQL*Plus SPOOL Command D-16
Using the AUTOTRACE Command D-17
Summary D-18

Appendix E: PL/SQL Server Pages
Objectives E-2
PSP Uses and Features E-3
Format of the PSP File E-4
Development Steps for PSP E-6
Printing the Table Using a Loop E-12
Specifying a Parameter E-13
Using an HTML Form to Call a PSP E-16
Debugging PSP Problems E-18
Summary E-20

Xiv

Preface

Profile

Before You Begin This Course
Before you begin this course, you should have a thorough knowledge of SQL,
SQL*Plus, and have working experience on developing applications with PL/SQL.

The prerequisites are Oracle Database 11g: Develop PL/SQL Program Units and
Oracle Database 11g: Introduction to SOL.

How This Course Is Organized

Oracle Database 11g: Advanced PL/SQL is an instructor-led course featuring
lectures and hands-on exercises. Online demonstrations and written practice
sessions reinforce the concepts and skills.

Preface -3

Related Publications
Oracle Publications

Title Part Number
Oracle Database Concepts 11g Release 2 (11.2) B28318-03
Oracle Database SQL Language Reference

11g Release 2 (11.2) E10592-04
Oracle Database PL/SQL Packages and Types

Referencel 1g Release 2 (11.2) E10577-05
Oracle Database PL/SQL Language

Reference 11g Release 2 (11.2) E10472-05
Oracle Database Advanced Developer’s

Guide 11g Release 2 (11.2) E10471-04
Oracle Database Object-Relational Developer’s

Guide 11g Release 2 (11.2) E11822-01
Oracle Database Performance Tuning

Guide 11g Release 2 (11.2) E10822-02

Additional Publications
» System release bulletins
+ Installation and user’s guides
* read.me files
* International Oracle User’s Group (IOUG) articles

* Oracle Magazine

Preface - 4

Typographic Conventions

The following table lists the typographical conventions that are used in text and code.

Typographical Conventions in Text

Convention

Uppercase

Lowercase,
italic

Initial cap

Italic

Quotation marks

Object or Term

Commands,
functions,
column names,
table names,
PL/SQL objects,
schemas

File names,
syntax variables,
usernames,
passwords

Trigger and
button names

Books, names of
courses and
manuals, and
emphasized
words or phrases

Lesson module
titles referenced
within a course

Example

Use the SELECT command to view
information stored in the LAST NAME
column of the EMPLOYEES table.

is the name of the role
to be created.

where: role

Assign a When-Validate-Item trigger to
the ORD block.

Select Cancel.

For more information about the subject, see
Oracle SQL Reference
Manual

Do not save changes to the database.

This subject is covered in Lesson 3,
“Working with Objects.”

Preface -5

Typographic Conventions (continued)

Typographical Conventions in Code

Convention

Uppercase

Lowercase,
italic

Initial cap

Lowercase

Bold

Object or Term

Commands,
functions

Syntax variables

Forms, triggers

Column names,
table names,
file names,
PL/SQL objects

Text that must
be entered by a
user

Example

SELECT employee id
FROM employees;

CREATE ROLE role;

Form module: ORD

Trigger level: S ITEM.QUANTITY
item

Trigger name: When-Validate-Item

.

OG_ACTIVATE LAYER
(OG_GET LAYER ('prod pie layer'))

SELECT last name
FROM employees;

CREATE USER scott
IDENTIFIED BY tiger;

Preface - 6

Introduction

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Course Objectives

After completing this course, you should be able to do the

following:
« Design PL/SQL packages and program units that execute
efficiently

* Write code to interface with external applications and the
operating system
» Create PL/SQL applications that use collections

« Write and tune PL/SQL code effectively to maximize
performance

* Implement a virtual private database with fine-grained
access control

« Write code to interface with large objects and use
SecureFile LOBs

« Perform code analysis to find program ambiguities and to
test, trace, and profile PL/SQL code

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Course Objectives

In this course, you learn how to use the advanced features of PL/SQL in order to design and tune
PL/SQL to interface with the database and other applications in the most efficient manner. Using the
advanced features of program design, packages, cursors, extended interface methods, and collections,
you learn how to write powerful PL/SQL programs. Programming efficiency, use of external C and
Java routines, and fine-grained access are covered in this course.

Oracle Database 11g: Advanced PL/SQL 1 -2

Lesson Agenda

* Previewing the course agenda
« Describing the development environments
« |dentifying the tables, data, and tools used in this course

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 1 -3

Course Agenda

« Day1
— Lesson 1: Introduction
— Lesson 2: PL/SQL Programming Concepts: Review
— Lesson 3: Designing PL/SQL Code
— Lesson 4: Working with Collections
- Day?2
— Lesson 5: Manipulating Large Objects
— Lesson 6: Using Advanced Interface Methods
— Lesson 7: Performance and Tuning
— Lesson 8: Improving Performance with Caching

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Agenda

In this three-day course, you start with a review of PL/SQL concepts before progressing into the new
and advanced topics. By the end of day one, you should have covered design considerations for your
program units, and how to use collections effectively.

On day two, you learn how to use advanced interface methods to call C and Java code from your
PL/SQL programs, how to manipulate large objects programmatically through PL/SQL, how to
administer the features of the new SecureFile LOB format of Database 11g, and how to tune PL/SQL
code and deal with memory issues.

Oracle Database 11g: Advanced PL/SQL 1-4

Course Agenda

- Day3
— Lesson 09: Analyzing PL/SQL Code
— Lesson 10: Profiling and Tracing PL/SQL Code

— Lesson 11: Implementing Fine-Grained Access Control for
VPD

— Lesson 12: Safeguarding Your Code Against SQL Injection
Attacks

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Agenda (continued)

On day three, you learn how to improve performance by using Oracle database 11g caching
techniques, how to write PL/SQL routines that analyze PL/SQL applications, how to profile and trace
PL/SQL code, how to implement and test fine-grained access control for virtual private databases,
and how to protect your code from SQL injection security attacks.

Oracle Database 11g: Advanced PL/SQL 1-5

Appendixes Used in This Course

* Appendix A: Practices and Solutions

* Appendix B: Table Descriptions and Data
« Appendix C: Using SQL Developer

* Appendix D: Using SQL*Plus

* Appendix E: PL/SQL Server Pages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 1-6

Lesson Agenda

* Previewing the course agenda
* Describing the development environments
« Identifying the tables, data, and tools used in this course

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 1-7

Development Environments: Overview

« SQL Developer
« SQL*Plus

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

PL/SQL Development Environments
SQL Developer

This course has been developed using Oracle SQL Developer as the tool for running the SQL
statements discussed in the examples in the slide and the practices.
» SQL Developer is shipped with Oracle Database 11g Release 2, and is the default tool for this

class.
SQL*Plus
The SQL*Plus environment may also be used to run all SQL commands covered in this course.

Note
» See Appendix C titled “Using SQL Developer” for information about using SQL Developer,

including simple instructions on installing version 1.5.4.
* See Appendix D titled “Using SQL*Plus” for information about using SQL*Plus.

Oracle Database 11g: Advanced PL/SQL 1 -8

What Is Oracle SQL Developer?

« Oracle SQL Developer is a free graphical tool that
enhances productivity and simplifies database
development tasks.

* You can connect to any target Oracle database schema
using standard Oracle database authentication.

* You will use SQL Developer in this course.
* Appendix C contains details on using SQL Developer.

SQL Developer

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

What Is Oracle SQL Developer?

Oracle SQL Developer is a free graphical tool designed to improve your productivity and simplify
the development of everyday database tasks. With just a few clicks, you can easily create and
maintain stored procedures, test SQL statements, and view optimizer plans.

SQL Developer, the visual tool for database development, simplifies the following tasks:
» Browsing and managing database objects
+ Executing SQL statements and scripts
 Editing and debugging PL/SQL statements
* Creating reports

You can connect to any target Oracle database schema using standard Oracle database authentication.
When connected, you can perform operations on objects in the database.

Appendix C

Appendix C of this course provides an introduction on using the SQL Developer interface. Turn to
the appendix now for information on creating a database connection, interacting with data using SQL
and PL/SQL, and more.

Oracle Database 11g: Advanced PL/SQL 1-9

Coding PL/SQL in SQL*Plus

Terminal

File Edit View Terminal Tabs Help
50L*Plus: Release 11.2.0.08.2 Beta on Thu May 28 21:208:35 2009 B

Copyright (c) 1982, 2009, Oracle. ALl rights reserved. -

&

Terminal

Enter user-name: oradl
Enter password:

Connected to:
Oracle Database 1llg Enterprise Edition Release 11.2.0.8.2 - Beta
With the Partitioning, OLAP, Data Mining and Real Application Testing options

50L> set serveroutput on

50L= create or replace procedure hello is
2 begin

dbms_output.put line('Hello Class!'};

end;

/

U W

Procedure created.

S0L> execute hello
Hello Class!

PL/SQL procedure successfully completed.

S50L=

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Coding PL/SQL in SQL*Plus

Oracle SQL*Plus is a command line interface that enables you to submit SQL statements and
PL/SQL blocks for execution and receive the results in an application or a command window.
SQL*Plus is:

 Shipped with the database

* Accessed from an icon or the command line

When coding PL/SQL subprograms using SQL*Plus, remember the following:
* You create subprograms by using the CREATE SQL statement.
* You execute subprograms by using either an anonymous PL/SQL block or the EXECUTE
command.
* Ifyou use the DBMS OUTPUT package procedures to print text to the screen, you must first
execute the SET SERVEROUTPUT ON command in your session.

Note
* To launch SQL*Plus in the Linux environment, open a Terminal window and enter the
command: sglplus

* For more information on how to use SQL*Plus, see Appendix D.

Oracle Database 11g: Advanced PL/SQL 1-10

Lesson Agenda

* Previewing the course agenda
« Describing the development environments
« ldentifying the tables, data, and tools used in this course

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 1 - 11

Tables Used in This Course

* The sample schemas used are:
— Order Entry (OE) schema

— Human Resources (HR) schema
* Primarily, the oE schema is used.
 The oE schema user can read data in the HrR schema
tables.

* Appendix B contains more information about the sample
schemas.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Tables Used in This Course

The sample company portrayed by Oracle Database Sample Schemas operates worldwide to fulfill
orders for several different products. The company has several divisions:
» The Human Resources division tracks information about the employees and the facilities of the
company.
» The Order Entry division tracks product inventories and sales of the company’s products through
various channels.
» The Sales History division tracks business statistics to facilitate business decisions. Although not
used in this course, the SH schema is part of the “Example” sample schemas shipped with the
database.

Each of these divisions is represented by a schema.
This course primarily uses the Order Entry (OE) sample schema.
Note: More details about the sample schema are found in Appendix B.

All scripts necessary to create the OE schema reside in the
SORACLE HOME/demo/schema/order entry folder.

All scripts necessary to create the HR schema reside in the
$SORACLE_HOME/demo/schema/human_ resources folder.

Oracle Database 11g: Advanced PL/SQL 1-12

The Order Entry Schema

PROMOTIONS CUSTOMERS
promo_id customer_id
OE promo_name customer_first_name
customer_last_name
cust_address_typ
AN
ORDERS street_address
ORDER_ITEMS |\ order_ld N postal code
. order_date y
) 0I’C|-el’7ld. 4 order mode 4 state_province
Ilne_ltem_.ld customer_id country_id
product_id
R . order_status
unit_price order_total phone_numbers
quantity sales_rep_id nis_language
A4 promotion_id nis_territory
credit_limit
cust_email
CATEGORIES_ PRODUCT_ PRODUCT_ account_mgr_id
TAB /| INFORMATION DESCRIPTIONS cust_geo_location
category_id < product_id > product_id date_of_birth
category_name product_name language_id marital_status
category_description product_description translated_name gender
parent_category_id category_id translated_description income_level
weight_class
warranty_period
supplier_id INVENTORIES WAREHOUSES
product_status product_id N warehouse_id
list_price —< warehouse_id 4 warehouse_spec
min_price quantity_on_hand warehouse_name
catalog_url location_id

wh_geo_location

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

The Order Entry (OE) Schema

The company sells several categories of products, including computer hardware and software, music,
clothing, and tools. The company maintains product information that includes product identification
numbers, the category into which the product falls, the weight group (for shipping purposes), the
warranty period if applicable, the supplier, the status of the product, a list price, a minimum price at
which a product will be sold, and a URL address for manufacturer information.

Inventory information is also recorded for all products, including the warehouse where the product is
available and the quantity on hand. Because products are sold worldwide, the company maintains the
names of the products and their descriptions in several different languages.

The company maintains warehouses in several locations to facilitate filling customer orders. Each
warehouse has a warehouse identification number, name, and location identification number.

Oracle Database 11g: Advanced PL/SQL 1-13

The Order Entry (OE) Schema (continued)

Customer information is tracked in some detail. Each customer is assigned an identification number.
Customer records include name, street address, city or province, country, phone numbers (up to five
phone numbers for each customer), and postal code. Some customers order through the Internet, so
email addresses are also recorded. Because of language differences among customers, the company
records the NLS language and territory of each customer. The company places a credit limit on its
customers to limit the amount for which they can purchase at one time. Some customers have
account managers, whom the company monitors. It keeps track of a customer’s phone number. At
present, you do not know how many phone numbers a customer might have, but you try to keep track
of all of them. Because of the language differences among our customers, you also identify the
language and territory of each customer.

When a customer places an order, the company tracks the date of the order, the mode of the order,
status, shipping mode, total amount of the order, and the sales representative who helped place the
order. This may be the same individual as the account manager for a customer, it may be someone
else, or, in the case of an order over the Internet, the sales representative is not recorded. In addition
to the order information, the company also tracks the number of items ordered, the unit price, and the
products ordered.

For each country in which it does business, the company records the country name, currency symbol,
currency name, and the region where the country resides geographically. This data is useful to
interact with customers who are living in different geographic regions of the world.

Oracle Database 11g: Advanced PL/SQL 1 -14

The Human Resources Schema

HR DEPARTMENTS LOCATIONS
departmant id location_id
--==-==---=-----1 deparimeni_nams [>—--1 strest_address
managsr_id postal_cods
location_id city
state_ provinzs
JOB_HISTORY ALY couniry_id
employee_id \|/
start_date I~ EMPLOYEES)
and_date employes id
job_id first_nama COUNTRIES
department_id last_name . country_id
email country_name
\I,/ phone_number ragion_id
H hira_dats
JOBS jeb_id N
job_id cornni:I:irgn_pcl '
[ob_titls M manager id REGIONS
min._salary dey artnier?l_id regicn_id
maix_salary P region_nams

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

The Human Resources (HR) Schema
In the human resources records, each employee has an identification number, email address, job
identification code, salary, and manager. Some employees earn a commission in addition to their
salary.

The company also tracks information about the jobs within the organization. Each job has an
identification code, job title, and a minimum and maximum salary range for the job. Some employees
have been with the company for a long time and have held different positions within the company.
When an employee switches jobs, the company records the start date and end date of the former job,
the job identification number, and the department.

The sample company is regionally diverse, so it tracks the locations of not only its warehouses but
also its departments. Each company employee is assigned to a department. Each department is
identified by a unique department number and a short name. Each department is associated with one
location. Each location has a full address that includes the street address, postal code, city, state or
province, and country code.

For each location where it has facilities, the company records the country name, currency symbol,
currency name, and the region where the country resides geographically.

Note: For more information about the “Example” sample schemas, refer to Appendix B.

Oracle Database 11g: Advanced PL/SQL 1-15

Oracle 11g SQL and PL/SQL Documentation

* Oracle Database New Features Guide 11g Release 2
(11.2)

* Oracle Database Advanced Application Developer's Guide
11g Release 2 (11.2)

* Oracle Database PL/SQL Language Reference 11g
Release 2 (11.2)

* Oracle Database Reference 11g Release 2 (11.2)

* Oracle Database SQL Language Reference 11g Release 2
(11.2)

* Oracle Database Concepts 11g Release 2 (11.2)

* Oracle Database PL/SQL Packages and Types Reference
11g Release 2 (11.2)

* Oracle Database SQL Developer User's Guide Release
1.5

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 1 -16

Summary

In this lesson, you should have learned how to:
« Describe the goals of the course
« ldentify the environments that can be used in this course

 Describe the database schema and tables that are used in
the course

 List the available documentation and resources

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you were introduced to the goals of the course, the SQL Developer and SQL*Plus
environments used in the course, and the database schema and tables used in the lectures and lab
practices.

Oracle Database 11g: Advanced PL/SQL 1 -17

Practice 1 Overview: Getting Started

This practice covers the following topics:
* Reviewing the available SQL Developer resources

- Starting SQL Developer and creating new database
connections and browsing the HR, OE, and SH tables

« Executing SQL statements and an anonymous PL/SQL
block by using SQL worksheet

* Accessing and bookmarking the Oracle Database 11g
documentation and other useful Web sites

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Practice 1: Overview

In this practice, you use SQL Developer to execute SQL statements for examining the data in the
“Example” sample schemas: HR, OE, and SH. You also create a simple anonymous block. Optionally,
you can experiment by creating and executing the PL/SQL code in SQL*Plus.

Note: All written practices use SQL Developer as the development environment. Although it is
recommended that you use SQL Developer, you can also use the SQL*Plus environment that is
available in this course.

Oracle Database 11g: Advanced PL/SQL 1 -18

PL/SQL Programming Concepts: Review

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Describe PL/SQL basics

« List restrictions on calling functions from SQL expressions
» Identify how explicit cursors are processed

* Handle exceptions

* Usethe raise application error procedure

* Manage dependencies

« Use Oracle-supplied packages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

PL/SQL supports various programming constructs. This lesson reviews the basic concept of PL/SQL
programming. This lesson also reviews how to:

 Create subprograms

» Use cursors

* Handle exceptions

+ Identify predefined Oracle server errors

» Manage dependencies

A quiz at the end of the lesson will assess your knowledge of PL/SQL.

Oracle Database 11g: Advanced PL/SQL 2 -2

Lesson Agenda

« Describing PL/SQL basics

» Listing restrictions on calling functions from SQL
expressions

« Reviewing PL/SQL packages

» ldentifying how explicit cursors are processed

« Handling exceptions

* Using the raise application error procedure
 Managing dependencies

» Using Oracle-supplied packages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 2 -3

PL/SQL Block Structure

<header>

DECLARE IS|AS

o000 [X N)
BEGIN BEGIN

[X N J 'YX X)
EXCEPTION EXCEPTION

LA (X X

END; END;
Anonymous Stored
PL/SQL block program unit

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

PL/SQL Block Structure

An anonymous PL/SQL block structure consists of an optional DECLARE section, a mandatory
BEGIN-END block, and an optional EXCEPTION section before the END statement of the main

block.

A stored program unit has a mandatory header section. This section defines whether the program unit
is a function, procedure, or a package, and contains the optional argument list and their modes. A
stored program unit also has the other sections mentioned for the anonymous PL/SQL block.
However, a stored program unit does not have an optional DECLARE section, but it does contain an
IS | AS section that is mandatory and acts the same as the DECLARE section in an anonymous
block.

Every PL/SQL construct is made from one or more blocks. These blocks can be entirely separate or
nested within one another. Therefore, one block can represent a small part of another block, which in
turn can be part of the whole unit of code.

Oracle Database 11g: Advanced PL/SQL 2 -4

Naming Conventions

Advantages of proper naming conventions:
- Easier to read
* Understandable
« Gives information about the functionality
« Easier to debug
* Ensures consistency
« Can improve performance

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Naming Conventions

A proper naming convention makes the code easier to read and more understandable. It helps you
understand the functionality of the identifier. If the code is written using proper naming conventions,
you can easily find an error and rectify it. Most importantly, it ensures consistency among the code
written by different developers.

The following table shows the naming conventions followed in this course:

Identifier Convention Example

Variable v_prefix v_product name
Constant ¢ _prefix c_tax

Parameter p_prefix p_cust id

Exception e prefix e check credit limit
Cursor cur prefix cur_orders

Type typ prefix typ customer

Oracle Database 11g: Advanced PL/SQL 2-5

Procedures

A procedure is:

* A named PL/SQL block that performs a sequence of
actions and optionally returns a value or values

- Stored in the database as a schema object
« Used to promote reusability and maintainability

CREATE [OR REPLACE] PROCEDURE procedure name
[(parameterl [mode] datatypel,
parameter2 [mode] datatype2, ...)]
IS|AS
[local variable declarations; ..]
BEGIN
-- actions;
END [procedure name];

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Procedures

A procedure is a named PL/SQL block that can accept parameters (sometimes referred to as
arguments). Generally, you use a procedure to perform an action. A procedure is compiled and stored
in the database as a schema object. Procedures promote reusability and maintainability.

Parameters are used to transfer data values to and from the calling environment and the procedure (or
subprogram). Parameters are declared in the subprogram header, after the name and before the
declaration section for local variables.
Parameters are subject to one of the three parameter-passing modes: IN, OUT, or IN OUT.
* An IN parameter passes a constant value from the calling environment into the procedure.
* An OUT parameter passes a value from the procedure to the calling environment.
* An IN OUT parameter passes a value from the calling environment to the procedure and a
possibly different value from the procedure back to the calling environment using the same
parameter.

Oracle Database 11g: Advanced PL/SQL 2 -6

Procedure: Example

CREATE OR REPLACE PROCEDURE get avg order
(p_cust id NUMBER, p cust last name VARCHAR2,
p_order tot NUMBER)
IS
v_cust ID customers.customer id%type;
v_cust name customers.cust last name%type;
v_avg order NUMBER;
BEGIN
SELECT customers.customer id, customers.cust last name,
|AVG (orders.order_total) |
INTO v_cust id, v _cust name, v_avg order
FROM CUSTOMERS, ORDERS
WHERE customers.customer id=orders.customer id
GROUP BY customers.customer id, customers.cust last name;
END;
/

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Procedure: Example

This reusable procedure has a parameter with a SELECT statement for getting average order totals
for whatever customer value is passed in.

Note: If a developer drops a procedure, and then re-creates it, all applicable grants to execute the
procedure are gone. Alternatively, the OR REPLACE command removes the old procedure and re-
creates it but leaves all the grants against the said procedure in place. Thus, the OR REPLACE
command is recommended wherever there is an existing procedure, function, or package; not merely
for convenience, but also to protect granted privileges. If you grant object privileges, these privileges
remain after you re-create the subprogram with the OR REPLACE option; otherwise, the privileges
are not preserved.

Oracle Database 11g: Advanced PL/SQL 2 -7

Stored Functions

A function is:
* A named block that must return a value
« Stored in the database as a schema object

« Called as part of an expression or used to provide a
parameter value

CREATE [OR REPLACE] FUNCTION function name
[(parameterl [model] datatypel, ...)]
RETURN datatype IS|AS
[local variable declarations; ..]
BEGIN
-- actions;
RETURN expression;
END [function name];

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Stored Functions

A function is a named PL/SQL block that can accept parameters, be invoked, and return a value. In
general, you use a function to compute a value. Functions and procedures are structured alike. A
function must return a value to the calling environment, whereas a procedure returns zero or more
values to its calling environment. Like a procedure, a function has a header, a declarative section, an
executable section, and an optional exception-handling section. A function must have a RETURN
clause in the header and at least one RETURN statement in the executable section, and must return a
value in each exception handler to avoid the “ORA-06503: PL/SQL: Function returned without
value” error.

Functions can be stored in the database as schema objects for repeated execution. A function that is
stored in the database is referred to as a stored function. Functions can also be created on client-side
applications.

Functions promote reusability and maintainability. When validated, they can be used in any number
of applications. If the processing requirements change, only the function must be updated.

A function may also be called as part of a SQL expression or as part of a PL/SQL expression. In the
context of a SQL expression, a function must obey specific rules to control side effects. In a PL/SQL
expression, the function identifier acts like a variable whose value depends on the parameters passed
to it.

Oracle Database 11g: Advanced PL/SQL 2 -8

Function: Example

* Create the function:

CREATE OR REPLACE FUNCTION get credit
(v_id customers.customer id%TYPE) RETURN NUMBER IS
v_credit customers.credit limit%TYPE := 0;
BEGIN
SELECT credit limit
INTO v_credit
FROM customers
WHERE customer id = v_id;
RETURN (v _credit);
END get credit;
/

* Invoke the function as an expression or as a parameter
value:

EXECUTE dbms output.put line(get credit(101))

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Function: Example

The get credit function is created with a single input parameter and returns the credit limit as a
number, as shown in the first code box in the slide. The get credit function follows the common
programming practice of assigning a returning value to a local variable and uses a single RETURN
statement in the executable section of the code to return the value stored in the local variable. If your
function has an exception section, it may also contain a RETURN statement.

Invoke a function as part of a PL/SQL expression, because the function returns a value to the calling
environment. The second code box uses the SQL*Plus EXECUTE command to call the

DBMS_ OUTPUT.PUT_ LINE procedure whose argument is the return value from the get credit
function. In this case, DBMS_OUTPUT . PUT LINE is invoked first; it calls get _credit to
calculate the credit limit of the customer with ID 101. The credit 1imit value returned is
supplied as the value of the DBMS OUTPUT . PUT LINE parameter, which then displays the result
(if you have executed SET SERVEROUTPUT ON).

Note: The $TYPE attribute casts the data type to the type defined for the column in the table
identified. You can use the $TYPE attribute as a data type specifier when declaring constants,
variables, fields, and parameters.

A function must always return a value. The example does not return a value if a row is not found for
a given ID. Ideally, create an exception handler to return a value as well.

Oracle Database 11g: Advanced PL/SQL 2-9

Ways to Execute Functions

* Invoke as part of a PL/SQL expression
— Using a host variable to obtain the result:

VARIABLE v _credit NUMBER
EXECUTE :v _credit := get credit(101)

— Using a local variable to obtain the result:

DECLARE v _credit customers.credit limit%type;
BEGIN

v_credit := get credit(101); ...
END;

* Use as a parameter to another subprogram

EXECUTE dbms output.put line(get credit(101))

* Use in a SQL statement (subject to restrictions)

SELECT get credit(customer id) FROM customers;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Ways to Execute Functions

If functions are designed thoughtfully, they can be powerful constructs. Functions can be invoked in

the following ways:

» As part of PL/SQL expressions: You can use host or local variables to hold the returned value
from a function. The first example in the slide uses a host variable and the second example uses

a local variable in an anonymous block.

* As a parameter to another subprogram: The third example in the slide demonstrates this
usage. The get credit function, with all its arguments, is nested in the parameter required
by the DBMS_OUTPUT . PUT LINE procedure. This comes from the concept of nesting

functions, as discussed in the Oracle Database 11g: SOQL Fundamentals I course.

* As an expression in a SQL statement: The last example shows how a function can be used as a

single-row function in a SQL statement.

Note: The restrictions and guidelines that apply to functions when used in a SQL statement are

discussed in the next few pages.

Oracle Database 11g: Advanced PL/SQL 2-10

Lesson Agenda

« Describing PL/SQL basics

« Listing restrictions on calling functions from SQL
expressions

« Reviewing PL/SQL packages

» ldentifying how explicit cursors are processed

« Handling exceptions

* Using the raise application error procedure
 Managing dependencies

» Using Oracle-supplied packages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 2 - 11

Restrictions on Calling Functions
from SQL Expressions

« User-defined functions that are callable from SQL
expressions must:

— Be stored in the database

— Accept only IN parameters with valid SQL data types, not
PL/SQL-specific types

— Return valid SQL data types, not PL/SQL-specific types

* When calling functions in SQL statements:
— You must own the function or have the EXECUTE privilege

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Restrictions on Calling Functions from SQL Expressions

The user-defined PL/SQL functions that are callable from SQL expressions must meet the following
requirements:

» The function must be stored in the database.

» The function parameters must be input parameters and should be valid SQL data types.

* The functions must return data types that are valid SQL data types. They cannot be PL/SQL-
specific data types such as BOOLEAN, RECORD, or TABLE. However, The return type can be
PLS INTEGER and BINARY INTEGER. The same restriction applies to the parameters of the
function.

The following restrictions apply when calling a function in a SQL statement:
* You must own or have the EXECUTE privilege on the function.

Other restrictions on a user-defined function include the following:
* It cannot be called from the CHECK constraint clause of a CREATE TABLE or ALTER TABLE
statement.
« It cannot be used to specify a default value for a column.

Note: Only stored functions are callable from SQL statements. Stored procedures cannot be called
unless invoked from a function that meets the preceding requirements.

Oracle Database 11g: Advanced PL/SQL 2 -12

Restrictions on Calling Functions
from SQL Expressions

Functions called from:
« A SELECT statement cannot contain DML statements

e An UPDATE or DELETE statement on a table T cannot
query or contain DML on the same table T

« SQL statements cannot end transactions (that is, cannot
execute COMMIT or ROLLBACK operations)

Note: Calls to subprograms that break these restrictions are
also not allowed in the function.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Restrictions on Calling Functions from SQL Expressions (continued)

To execute a SQL statement that calls a stored function, the Oracle server must know whether the
function is free of specific side effects. Side effects are unacceptable changes to database tables.

Additional restrictions also apply when a function is called in expressions of SQL statements. In
particular, when a function is called from:
* A SELECT statement or a parallel UPDATE or DELETE statement, the function cannot modify a
database table, unless the modification occurs in an autonomous transaction
* An INSERT... SELECT (but not an INSERT... VALUES), an UPDATE, or a DELETE statement,
the function cannot query or modify a database table that was modified by that statement
* A SELECT, INSERT, UPDATE, or DELETE statement, the function cannot execute directly or
indirectly through another subprogram or through a SQL transaction control statement such as:
- A COMMIT or ROLLBACK statement
- A session control statement (such as SET ROLE)
- A system control statement (such as ALTER SYSTEM)
- Any data definition language (DDL) statements (such as CREATE), because they are
followed by an automatic commit

Note: The function can execute a transaction control statement if the transaction being controlled is
autonomous.

Oracle Database 11g: Advanced PL/SQL 2-13

Lesson Agenda

« Describing PL/SQL basics

» Listing restrictions on calling functions from SQL
expressions

« Reviewing PL/SQL packages

» ldentifying how explicit cursors are processed

« Handling exceptions

* Using the raise application error procedure
 Managing dependencies

» Using Oracle-supplied packages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 2 - 14

PL/SQL Packages: Review

PL/SQL packages:

« Group logically related components:
— PL/SQL types
— Variables, data structures, and exceptions
— Subprograms: procedures and functions

* Consist of two parts:
— A specification [l
— A body

- Enable the Oracle server to read multiple objects into
memory simultaneously

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

PL/SQL Packages: Review

PL/SQL packages enable you to bundle related PL/SQL types, variables, data structures, exceptions,
and subprograms into one container. For example, an Order Entry package can contain procedures
for adding and deleting customers and orders, functions for calculating annual sales, and credit limit
variables.

A package usually consists of two parts that are stored separately in the database:
» A specification
* A body (optional)

Note: Having a package body is mandatory if the specification contains subprogram(s) only.

The package itself cannot be called, parameterized, or nested. After writing and compiling, the
contents can be shared with many applications.

When a PL/SQL-packaged construct is referenced for the first time, the whole package is loaded into
memory. However, subsequent access to constructs in the same package does not require disk /0.

Oracle Database 11g: Advanced PL/SQL 2 -15

Components of a PL/SQL Package

Package™¥ N\
specification variable
PTTTIN » Public
“]/ Procedure A declaration;
_ J

/ variable \

Procedure B definition ...

Procedure A definition » Private
variable

BEGIN

\ END; j
Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Components of a PL/SQL Package

You create a package in two parts:

» The package specification is the interface to your applications. It declares the public types,
variables, constants, exceptions, cursors, and subprograms that are available for use. The
package specification may also include pragmas, which are directives to the compiler.

* The package body defines its own subprograms and must fully implement the subprograms that
are declared in the specification part. The package body may also define PL/SQL constructs,
such as object types, variables, constants, exceptions, and cursors.

Public components are declared in the package specification. The specification defines a public API
for users of the package features and functionality. That is, public components can be referenced
from any Oracle server environment that is external to the package.

Private components are placed in the package body but not referenced in the specification and can be
referenced only by other constructs within the same package body. Alternatively, private components
can reference the public components of the package.

Note: If a package specification does not contain subprogram declarations, there is no requirement
for a package body.

Oracle Database 11g: Advanced PL/SQL 2 -16

Creating the Package Specification

Syntax:

CREATE [OR REPLACE] PACKAGE package name IS|AS
public type and variable declarations
subprogram specifications

END [package name] ;

« The OR REPLACE option drops and re-creates the
package specification.

- Variables declared in the package specification are
initialized to NULL by default.

« All constructs declared in a package specification are
visible to users who are granted privileges on the package.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Creating the Package Specification

» To create packages, you declare all public constructs within the package specification.
- Specify the OR REPLACE option if overwriting an existing package specification.
- Initialize a variable with a constant value or formula within the declaration, if required;
otherwise, the variable is initialized implicitly to NULL.
* The following are the definitions of items in the package syntax:
- package name specifies a name for the package that must be unique among objects
within the owning schema. Including the package name after the END keyword is optional.
- public type and variable declarations declares public variables, constants,
cursors, exceptions, user-defined types, and subtypes.
- subprogram specifications specifies the public procedure or function
declarations.

Note: The package specification should contain procedure and function signatures terminated by a
semicolon. The signature is every thing above IS |AS keywords. The implementation of a procedure
or function that is declared in a package specification is done in the package body.

Oracle Database 11g: Advanced PL/SQL 2 -17

Creating the Package Body

Syntax:

CREATE [OR REPLACE] PACKAGE BODY package name IS|AS
private type and variable declarations
subprogram bodies

[BEGIN initialization statements]

END [package name] ;

« The OR REPLACE option drops and re-creates the
package body.

» Identifiers defined in the package body are private and not
visible outside the package body.

« All private constructs must be declared before they are
referenced.

« Public constructs are visible to the package body.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Creating the Package Body

Create a package body to define and implement all public subprograms and the supporting private
constructs. When creating a package body, perform the following:

» Specify the OR REPLACE option to overwrite a package body.

» Define the subprograms in an appropriate order. The basic principle is that you must declare a
variable or subprogram before it can be referenced by other components in the same package
body. It is common to see all private variables and subprograms defined first and the public
subprograms defined last in the package body.

» The package body must complete the implementation for all procedures or functions declared in
the package specification.

The following are the definitions of items in the package body syntax:

e package name specifies a name for the package that must be the same as its package
specification. Using the package name after the END keyword is optional.

e private type and variable declarations declares private variables, constants,
cursors, exceptions, user-defined types, and subtypes.

e subprogram bodies specifies the full implementation of any private and/or public
procedures or functions.

e [BEGIN initialization statements] is an optional block of initialization code that
executes when the package is first referenced.

Oracle Database 11g: Advanced PL/SQL 2 -18

Lesson Agenda

« Describing PL/SQL basics

» Listing restrictions on calling functions from SQL
expressions

» Reviewing PL/SQL packages

« ldentifying how explicit cursors are processed

« Handling exceptions

* Using the raise application error procedure
 Managing dependencies

» Using Oracle-supplied packages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 2 -19

Cursor

« A cursor is a pointer to the private memory area allocated
by the Oracle server.
* There are two types of cursors:

— Implicit cursors: Created and managed internally by the
Oracle server to process SQL statements

— Explicit cursors: Explicitly declared by the programmer

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Cursor

You have already learned that you can include SQL statements that return a single row in a PL/SQL
block. The data retrieved by the SQL statement should be held in variables using the INTO clause.

Where Does Oracle Process SQL Statements?

The Oracle server allocates a private memory area, called the context area, to process SQL
statements. The SQL statement is parsed and processed in this area. The information required for
processing and the information retrieved after processing are stored in this area. Because this area is
internally managed by the Oracle server, you have no control over this area. A cursor is a pointer to
the context area. However, this cursor is an implicit cursor and is automatically managed by the
Oracle server. Oracle not only creates cursor for DML statement, but also for DDL and DCL
statements such as : CREATE, ALTER, DROP TABLE, GRANT REVOKE, etc. When the executable
block contains a SQL statement, an implicit cursor is created.

There are two types of cursors:
» Implicit cursors: Implicit cursors are created and managed by the Oracle server. You do not
have access to them. The Oracle server creates such a cursor when it executes a SQL statement,
such as SELECT, INSERT, UPDATE, or DELETE.

Oracle Database 11g: Advanced PL/SQL 2 -20

Cursor (continued)

» Explicit cursors: As a programmer, you may want to retrieve multiple rows from a database
table, have a pointer to each row that is retrieved, and work on the rows one at a time. In such
cases, you can declare cursors explicitly, depending on your business requirements. Such cursors
that are declared by programmers are called explicit cursors. You declare these cursors in the
declarative section of a PL/SQL block. Remember that you can also declare variables and
exceptions in the declarative section.

Oracle Database 11g: Advanced PL/SQL 2 - 21

Processing Explicit Cursors

The following three commands are used to process an explicit

cursor:
* OPEN
* FETCH
* CLOSE

Alternatively, you can also use a cursor FOR loop.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Processing Explicit Cursors

You declare an explicit cursor when you need exact control over query processing. You use three
commands to control a cursor:

e OPEN

e FETCH

e CLOSE

You initialize the cursor with the OPEN command, which recognizes the result set. Then, you execute
the FETCH command repeatedly in a loop until all rows are retrieved. Alternatively, you can use a
BULK COLLECT clause to fetch all rows at once. After the last row is processed, you release the
cursor by using the CLOSE command.

Oracle Database 11g: Advanced PL/SQL 2 -22

Explicit Cursor Attributes

Every explicit cursor has the following attributes:
* cursor namesFOUND
°* cursor namesISOPEN
* cursor namesNOTFOUND

* cursor namesROWCOUNT

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Cursor Attributes

When cursor attributes are appended to the cursors, they return useful information about the
execution of the data manipulation language (DML) statement. The following are the four cursor
attributes:
e cursor name%FOUND: Returns TRUE if the last fetch returned a row; returns NULL before
the first fetch from an OPEN cursor; returns FALSE if the last fetch failed to return a row
e cursor name%ISOPEN: Returns TRUE if the cursor is open, otherwise returns FALSE
e cursor name%NOTFOUND: Returns FALSE if the last fetch returned a row; returns NULL
before the first fetch from an OPEN cursor; returns TRUE if the last fetch failed to return a row
e cursor name%ROWCOUNT: Returns zero before the first fetch; after every fetch, returns the
number of rows fetched so far

Oracle Database 11g: Advanced PL/SQL 2 -23

Cursor FOR Loops

Syntax:

FOR record name IN cursor name LOOP
statementl;
statement2;

END LOOP;

 The cursor FOR loop is a shortcut to process explicit
Cursors.

« Implicit open, fetch, exit, and close occur.
* The record is implicitly declared.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Cursor FOR Loops

A cursor FOR loop processes rows in an explicit cursor. It is a shortcut, because the cursor is opened,
a row 1s fetched once for each iteration in the loop, the loop exits when the last row is processed, and
the cursor is closed automatically. The loop itself is terminated automatically at the end of the
iteration where the last row is fetched.

In the syntax:

record name Is the name of the implicitly declared record
cursor name Is a PL/SQL identifier for the previously declared cursor
Guidelines

* Do not declare the record in the loop, because it is declared implicitly.
 Test the cursor attributes during the loop, if required.

* Supply the parameters for a cursor, if required, in parentheses following the cursor name in the
FOR statement.

Oracle Database 11g: Advanced PL/SQL 2 - 24

Cursor: Example

DECLARE
CURSOR cur cust IS
SELECT cust first name, credit limit
FROM customers
WHERE credit limit > 4000;
BEGIN
| FOR v_cust record IN cur cust |
LOOP
DBMS OUTPUT.PUT LINE
(v _cust record.cust first name ||' ']
v_cust record.credit limit);
END LOOP; ~
END;
/

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Cursor: Example
The example shows the use of a cursor FOR loop.

cust_ record is the record that is implicitly declared. You can access the fetched data with this
implicit record as shown in the slide.

Note: An INTO clause or a FETCH statement is not required because the FETCH INTO is implicit.
The code does not have OPEN and CLOSE statements to open and close the cursor, respectively.

Oracle Database 11g: Advanced PL/SQL 2 -25

Lesson Agenda

« Describing PL/SQL basics

» Listing restrictions on calling functions from SQL
expressions

« Reviewing PL/SQL packages

» ldentifying how explicit cursors are processed

* Handling exceptions

* Using the raise application error procedure
 Managing dependencies

* Using Oracle-supplied packages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 2 - 26

Handling Exceptions

* An exception is an error in PL/SQL that is raised during
program execution.
* An exception can be raised:
— Implicitly by the Oracle server
— Explicitly by the program
* An exception can be handled:
— By trapping it with a handler
— By propagating it to the calling environment
— By trapping and propagating it

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Handling Exceptions

An exception is an error in PL/SQL that is raised during the execution of a block. A block always
terminates when PL/SQL raises an exception, but you can specify an exception handler to perform
final actions before the block ends.

Methods for Raising an Exception

* An Oracle error occurs and the associated exception is raised automatically. For example, if the
error ORA- 01403 occurs when no rows are retrieved from the database in a SELECT
statement, PL/SQL raises the NO DATA FOUND exception. These errors are converted into
predefined exceptions.

* Depending on the business functionality that your program is implementing, you may have to
explicitly raise an exception by issuing the RAISE statement within the block. The exception
being raised may be either user-defined or predefined.

» There are some non-predefined Oracle errors. These errors are any standard Oracle errors that
are not predefined. You can explicitly declare exceptions and associate them with the
nonpredefined Oracle errors.

Methods for Handling an Exception

The third method in the slide for handling an exception involves trapping and propagating. It is often
very important to be able to handle an exception after propagating it to the invoking environment, by
issuing a simple RAISE statement.

Oracle Database 11g: Advanced PL/SQL 2 - 27

Handling Exceptions

é E:: exception Terminate
Z2Z- trapped? abruptly.
| =
Exception
raised
Execute statements Propagate the
in the EXCEPTION exception.
section.
Terminate
gracefully.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Handling Exceptions (continued)

Trapping an Exception

Include an EXCEPTION section in your PL/SQL program to trap exceptions. If the exception is
raised in the executable section of the block, processing branches to the corresponding exception
handler in the exception section of the block. If PL/SQL successfully handles the exception, the
exception does not propagate to the enclosing block or to the calling environment. The PL/SQL
block terminates successfully.

Propagating an Exception
If the exception is raised in the executable section of the block and there is no corresponding
exception handler, the PL/SQL block terminates with failure and the exception is propagated to an

enclosing block or to the calling environment. The calling environment can be any application, such
as SQL*Plus, that invokes the PL/SQL program.

Oracle Database 11g: Advanced PL/SQL 2 - 28

Exceptions: Example

DECLARE
v_lname VARCHAR2 (15) ;

BEGIN
SELECT cust last name INTO v lname FROM customers
WHERE cust first name='Ally’';

DBMS OUTPUT.PUT LINE ('Ally''s last name is : '
v_lname) ;

EXCEPTION
WHEN TOO MANY ROWS THEN
DBMS OUTPUT.PUT LINE (' Your select statement

retrieved multiple rows. Consider using a
cursor.');

END;
/

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Exceptions: Example

You have written PL/SQL blocks with a declarative section (beginning with the keyword DECLARE)
and an executable section (beginning and ending with the keywords BEGIN and END, respectively).
For exception handling, include another optional section called the EXCEPTION section. This
section begins with the keyword EXCEPTION. If present, this is the last section in a PL/SQL block.

Examine the code in the slide to see the EXCEPTION section.

The output of this code is shown below:
Your select statement retrieved multiple rows. Consider using a
cursor.

PL/SQL procedure successfully completed.

When the exception is raised, the control shifts to the EXCEPTION section and all statements in the
specified EXCEPTION section are executed. The PL/SQL block terminates with normal, successful
completion. Only one exception handler is executed.

Note the SELECT statement in the executable block. That statement requires that a query must return
only one row. If multiple rows are returned, a “too many rows” exception is raised. If no rows are

returned, a “no data found” exception is raised. The block of code in the slide tests for the “too many
rows” exception.

Oracle Database 11g: Advanced PL/SQL 2 -29

Predefined Oracle Server Errors

* Reference the predefined name in the exception-handling
routine.

« Sample predefined exceptions:
— NO_DATA_ FOUND
— TOO_MANY ROWS
— INVALID CURSOR
— ZERO_DIVIDE
— DUP_VAL ON_ INDEX

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Predefined Oracle Server Errors

You can reference predefined Oracle server errors by using its predefined name within the
corresponding exception-handling routine.

For a complete list of predefined exceptions, see the PL/SQL User’s Guide and Reference.
Note: PL/SQL declares predefined exceptions in the STANDARD package.

Oracle Database 11g: Advanced PL/SQL 2 -30

Predefined Oracle Server Errors (continued)

Exception Name Oracle Server | Description
Error
Number
ACCESS_INTO_NULL ORA-06530 | Attempted to assign values to the
attributes of an uninitialized object.
CASE_NOT_FOUND ORA-06592 | None of the choices in the WHEN
clauses of a CASE statement is
selected, and there is no ELSE clause.
COLLECTION_IS_ NULL ORA-06531 | Attempted to apply collection methods
other than EXISTS to an uninitialized
nested table or varray.
CURSOR_ALREADY OPEN ORA-06511 Attempted to open an already open
Cursor.
DUP_VAL_ON_INDEX ORA-00001 | Attempted to insert a duplicate value.
INVALID_ CURSOR ORA-01001 | Illegal cursor operation occurred.
INVALID_NUMBER ORA-01722 Conversion of character string to
number failed.
LOGIN_DENIED ORA-01017 | Logging on to the Oracle server with
an invalid username or password.
NO_DATA_FOUND ORA-01403 | Single-row SELECT returned no data.
NOT_ LOGGED_ON ORA-01012 | PL/SQL program issued a database
call without being connected to the
Oracle server.
PROGRAM_ERROR ORA-06501 | PL/SQL has an internal problem.
ROWTYPE_MISMATCH ORA-06504 | Host cursor variable and PL/SQL

cursor variable involved in an
assignment have incompatible return

types.

Oracle Database 11g: Advanced PL/SQL 2 - 31

Predefined Oracle Server Errors (continued)

Exception Name Oracle Description
Server
Error
Number

STORAGE_ERROR ORA-06500 | PL/SQL ran out of memory or memory is
corrupted.

SUBSCRIPT_BEYOND COUNT | ORA-06533 | Referenced a nested table or varray
element by using an index number larger
than the number of elements in the
collection.

SUBSCRIPT OUTSIDE LIMIT | ORA-06532 [Referenced a nested table or varray
element by using an index number that is
outside the legal range (for example —1).

SYS_INVALID_ ROWID ORA-01410 | The conversion of a character string into
a universal ROWID failed because the
character string did not represent a valid
ROWID.

TIMEOUT_ON_RESOURCE ORA-00051 | Time-out occurred while the Oracle
server was waiting for a resource.

TOO_MANY ROWS ORA-01422 | Single-row SELECT returned more than
one row.

VALUE_ERROR ORA-06502 | Arithmetic, conversion, truncation, or
size-constraint error occurred.

ZERO DIVIDE ORA-01476

Attempted to divide by zero.

Oracle Database 11g: Advanced PL/SQL 2 - 32

Trapping Non-Predefined Oracle
Server Errors

Declare |——»| Associate »| Reference
Declarative section EXCEPTION section
Name the Code PRAGMA Handle the raised
exception EXCEPTION INIT exception

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Trapping Non-Predefined Oracle Server Errors

Non-predefined exceptions are similar to predefined exceptions; however, they are not defined as
PL/SQL exceptions in the Oracle server. They are standard Oracle errors. You can create exceptions
with standard Oracle errors by using the PRAGMA EXCEPTION INIT function. Such exceptions are
called nonpredefined exceptions.

You can trap a nonpredefined Oracle server error by declaring it first. The declared exception is
raised implicitly. In PL/SQL, PRAGMA EXCEPTION INIT instructs the compiler to associate an

exception name with an Oracle error number. This allows you to refer to any internal exception by

name and to write a specific handler for it.

DECLARE
e MissingNull EXCEPTION;
PRAGMA EXCEPTION INIT (e MissingNull, -1400);
BEGIN
INSERT INTO employees (id) VALUES (NULL) ;
EXCEPTION
WHEN e_MissingNull then

DBMS OUTPUT.put line('ORA-1400 occurred') ;
END;
/

ORA-1400 occurred

Note: PRAGMA (also called pseudoinstructions) is the keyword that signifies that the statement is a
compiler directive, which is not processed when the PL/SQL block is executed. Rather, it directs the
PL/SQL compiler to interpret all occurrences of the exception name within the block as the
associated Oracle server error number.

Oracle Database 11g: Advanced PL/SQL 2 - 33

Trapping User-Defined Exceptions

Declare > Raise »| Reference
Declarative Executable Exception-handling
section section section
Name the Explicitly raise Handle the raised
exception the exception by exception
using the RAISE
statement

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Trapping User-Defined Exceptions

With PL/SQL, you can define your own exceptions. You define exceptions depending on the
requirements of your application. For example, you may prompt the user to enter a department
number.
Define an exception to deal with error conditions in the input data. Check whether the department
number exists. If it does not, you may have to raise the user-defined exception. PL/SQL exceptions
must be:

* Declared in the declarative section of a PL/SQL block

+ Raised explicitly with RATSE statements

* Handled in the EXCEPTION section

Oracle Database 11g: Advanced PL/SQL 2 - 34

Lesson Agenda

« Describing PL/SQL basics

» Listing restrictions on calling functions from SQL
expressions

« Reviewing PL/SQL packages

» ldentifying how explicit cursors are processed

« Handling exceptions

* Using the raise application error procedure
 Managing dependencies

* Using Oracle-supplied packages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 2 - 35

The RAISE APPLICATION ERROR
Procedure

Syntax:

raise application error (error number,
messagel, {TRUE | FALSE}]);

* You can use this procedure to issue user-defined error
messages from stored subprograms.

* You can report errors to your application and avoid
returning unhandled exceptions.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

The RAISE APPLICATION ERROR Procedure

Use the raise application error procedure to communicate a predefined exception

interactively by returning a nonstandard error code and error message. With
raise application error, you can report errors to your application and avoid returning

unhandled exceptions.
In the syntax:

error_number s auser-specified number for the exception between —20,000
and —20,999 (this is not an Oracle-defined exception number).

message Is the user-specified message for the exception. It is a character
string up to 2,048 bytes long.

TRUE | FALSE [s an optional Boolean parameter. (If TRUE, the error is placed
on the stack of previous errors. If FALSE, the default, the error
replaces all previous errors.)

Oracle Database 11g: Advanced PL/SQL 2 - 36

The RAISE APPLICATION ERROR
Procedure

* Is used in two places:
— Executable section
— Exception section

 Returns error conditions to the user in a manner consistent
with other Oracle server errors

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

The RAISE APPLICATION ERROR Procedure (continued)

The raise application error procedure can be used in either the executable section or the
exception section of a PL/SQL program, or both. The returned error is consistent with how the Oracle
server processes a predefined, nonpredefined, or user-defined error. The error number and message
are displayed to the user.

Oracle Database 11g: Advanced PL/SQL 2 - 37

Lesson Agenda

« Describing PL/SQL basics

» Listing restrictions on calling functions from SQL
expressions

« Reviewing PL/SQL packages

» ldentifying how explicit cursors are processed

« Handling exceptions

* Using the raise application error procedure
« Managing dependencies

» Using Oracle-supplied packages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 2 - 38

Dependencies

Dependent objects Referenced objects
Table Function
View Package specification
Database trigger Procedure
Procedure > Sequence
Function Synonym
Package body Table
Package specification View
User-defined object User-defined object
and collection types and collection types

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Dependencies

Some objects reference other objects as part of their definitions. For example, a stored procedure
could contain a SELECT statement that selects columns from a table. For this reason, the stored

procedure is called a dependent object, whereas the table is called a referenced object.
Dependency Issues

If you alter the definition of a referenced object, dependent objects may or may not continue to work
properly. For example, if the table definition is changed, a procedure may or may not continue to
work without an error.

The Oracle server automatically records dependencies among objects. To manage dependencies, all
schema objects have a status (valid or invalid) that is recorded in the data dictionary, and you can
view the status in the USER_OBJECTS data dictionary view.

Status Significance

VALID The schema object was compiled and can be immediately used when referenced.

INVALID The schema object must be compiled before it can be used.

Oracle Database 11g: Advanced PL/SQL 2 -39

Dependencies

/ View or \

Procedure procedure Table
XXX XXX XXX X
i Direct Direct
wwwwwww || dependency dependency
XXX XXX XXX X
VVVVVVVVVVVVVV —//
XXXXXXXXXXXXXX > / ’
- Referenced
VVVVVVVVVVVVVV
Dependent /

_______________________ .f\/

Dependent [Indirect] Referenced

\ dependency /
Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Dependencies (continued)

A procedure or function can directly or indirectly (through an intermediate view, procedure, function,
or packaged procedure or function) reference the following objects:

» Tables

* Views

* Sequences

* Procedures

* Functions

» Packaged procedures or functions

Oracle Database 11g: Advanced PL/SQL 2 -40

Displaying Direct and Indirect Dependencies

1. Runthe utldtree.sqgl script to create the objects that
enable you to display the direct and indirect dependencies.

2. Execute the DEPTREE FILL procedure:

EXECUTE deptree fill('TABLE', 'OE', 'CUSTOMERS')

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Displaying Direct and Indirect Dependencies
You can display direct and indirect dependencies from additional user views called DEPTREE and
IDEPTREE,; these views are provided by the Oracle database.

Example

1. Make sure that the ut 1dtree. sql script was executed. This script is located in the
SORACLE_HOME/rdbms/admin folder.

2. Populate the DEPTREE _TEMPTAB table with information for a particular referenced object by
invoking the DEPTREE FILL procedure. There are three parameters for this procedure:

object_type Type of the referenced object
object owner Schema of the referenced object
object name Name of the referenced object

Oracle Database 11g: Advanced PL/SQL 2 - 41

Lesson Agenda

« Describing PL/SQL basics

» Listing restrictions on calling functions from SQL
expressions

« Reviewing PL/SQL packages

» ldentifying how explicit cursors are processed

« Handling exceptions

* Using the raise application error procedure
 Managing dependencies

» Using Oracle-supplied packages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 2 -42

Using Oracle-Supplied Packages

Oracle-supplied packages:
« Are provided with the Oracle server
« Extend the functionality of the database

« Enable access to certain SQL features that are normally
restricted for PL/SQL

For example, the DBMS OUTPUT package was originally
designed to debug PL/SQL programs.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Oracle-Supplied Packages

Packages are provided with the Oracle server to allow either of the following:
» PL/SQL access to certain SQL features
» The extension of the functionality of the database

You can use the functionality provided by these packages when creating your application, or you
may simply want to use these packages as ideas when you create your own stored procedures.

Most of the standard packages are created by running catproc.sql.

Oracle Database 11g: Advanced PL/SQL 2 -43

Some of the Oracle-Supplied Packages

Here is an abbreviated list of some Oracle-supplied packages:
 DBMS ALERT

- DBMS_LOCK

- DBMS_SESSION

- DBMS_OUTPUT

« HTP

* UTL FILE

- UTL MAIL

- DBMS_SCHEDULER

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Some of the Oracle-Supplied Packages

The list of PL/SQL packages provided with an Oracle database grows with the release of new
versions. It would be impossible to cover the exhaustive set of packages and their functionality in this
course. For more information, refer to the PL/SQL Packages and Types Reference 11g (previously
known as the PL/SQL Supplied Packages Reference).

The following is a brief description of some listed packages:

The DBMS ALERT package supports asynchronous notification of database events. Messages or
alerts are sent on a COMMIT command.

The DBMS_LOCK package is used to request, convert, and release locks through Oracle Lock
Management services.

The DBMS SESSION package enables programmatic use of the ALTER SESSION SQL
statement and other session-level commands.

The DBMS OUTPUT package provides debugging and buffering of text data.

The HTP package writes HTML-tagged data into database buffers.

The UTL FILE package enables reading and writing of operating system text files.

The UTL_MAIL package enables composing and sending of email messages.

The DBMS SCHEDULER package enables scheduling and automated execution of PL/SQL
blocks, stored procedures, and external procedures or executables.

Oracle Database 11g: Advanced PL/SQL 2 -44

DBMS OUTPUT Package

The DBMS OUTPUT package enables you to send messages
from stored subprograms and triggers.

 PUT and PUT LINE place text in the buffer.

* GET LINE and GET LINES read the buffer.

« Use SET SERVEROUTPUT ON to display messages in
SQL*Plus. (The default is OFF.)

PUT
7} NEW LINE
= . PUT LINE e
SQL Plus Output — > Z
| SET SERVEROUT ON [SIZE n] >.pu{?.“"' - —~
EXEC proc <4 "GET LINE e

GET LINEs DBuffer

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

DBMS OUTPUT Package

The DBMS OUTPUT package sends textual messages from any PL/SQL block into a buffer in the
database. The procedures provided by the package include:

e PUT to append text from the procedure to the current line of the line output buffer
NEW_ LINE to place an end-of-line marker in the output buffer
PUT LINE to combine the action of PUT and NEW_LINE; to trim leading spaces
GET_LINE to retrieve the current line from the buffer into a procedure variable
GET_LINES to retrieve an array of lines into a procedure-array variable
ENABLE/DISABLE to enable or disable calls to the DBMS OUTPUT procedures

The buffer size can be set by using:
* The SIZE n option appended to the SET SERVEROUTPUT ON command, where n is
between 2,000 (the default) and 1,000,000 (1 million characters)
* An integer parameter between 2,000 and 1,000,000 in the ENABLE procedure

Practical Uses
* You can output results to the window for debugging purposes.
* You can trace the code execution path for a function or procedure.
* You can send messages between subprograms and triggers.

Note: There is no mechanism to flush output during the execution of a procedure.

Oracle Database 11g: Advanced PL/SQL 2 -45

UTL FILE Package

The UTL_ FILE package extends PL/SQL programs to read
and write operating system text files.

* It provides a restricted version of operating system stream
file 1/O for text files.

* It can access files in operating system directories defined
by a CREATE DIRECTORY statement.

CREATE DIRECTORY /'/‘
my dir AS '/dlr !,

lus
EXEC proc 7 %
UTL FILE = O/S file

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

UTL FILE Package

The Oracle-supplied UTL FILE package is used to access text files in the operating system of the

database server. The database provides read and write access to specific operating system directories
by using a CREATE DIRECTORY statement that associates an alias with an operating system
directory. The database directory alias can be granted the READ and WRITE privileges to control the

type of access to files in the operating system. For example:

CREATE DIRECTORY my dir AS '/temp/my files';

GRANT READ, WRITE ON DIRECTORY my dir TO public;
This approach of using the directory alias created by the CREATE DIRECTORY statement does not
require the database to be restarted. The operating system directories specified should be accessible
to and on the same machine as the database server processes. The path (directory) names may be
case-sensitive for some operating systems.

Note: The DBMS_LOB package can be used to read binary files on the operating system.

Oracle Database 11g: Advanced PL/SQL 2 - 46

Summary

In this lesson, you should have learned how to:

« Identify a PL/SQL block

* Create subprograms

» List restrictions on calling functions from SQL expressions
« Use cursors

* Handle exceptions

 Usethe raise application error procedure

« ldentify Oracle-supplied packages

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Summary

This lesson reviewed some basic PL/SQL concepts, such as:
» PL/SQL block structure
» Subprograms
* Cursors
» Exceptions
* Oracle-supplied packages

Oracle Database 11g: Advanced PL/SQL 2 -47

Practice 2: Overview

This practice covers the review of the following topics:
« PL/SQL basics
« Cursor basics
* Exceptions
« Dependencies

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Practice 2: Overview

In this practice, you test and review your PL/SQL knowledge. This knowledge is necessary as a base
line for the subsequent chapters to build upon.

Oracle Database 11g: Advanced PL/SQL 2 -48

Designing PL/SQL Code

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

» Identify guidelines for cursor design

« Use cursor variables

« Create subtypes based on the existing types for an
application

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives
This lesson discusses several concepts that apply to the designing of PL/SQL program units.
This lesson explains how to:
* Design and use cursor variables
» Describe the predefined data types
» Create subtypes based on existing data types for an application

Oracle Database 11g: Advanced PL/SQL 3 -2

Lesson Agenda

« ldentifying guidelines for cursor design
« Using cursor variables
* Creating subtypes based on existing types

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 3 -3

Guidelines for Cursor Design

* Fetch into a record when fetching from a cursor.

DECLARE
CURSOR cur cust IS

SELECTIcustomer_id, cust last name, cust_emaill

FROM customers WHERE credit limit = 1200;

v_cust_record cur cust%ROWTYPE;
BEGIN
OPEN cur cust;
LOOP
FETCH cur cust INTO|v cust record;

» Benefit
— No individual variables declaration is needed.
— You can automatically use the structure of the SELECT
column list.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Guidelines for Cursor Design

Guideline
* When fetching from a cursor, fetch into a record.

Benefit
1. You do not need to declare individual variables, and you reference only the values that you

want to use.
2. You can automatically use the structure of the SELECT column list.

Oracle Database 11g: Advanced PL/SQL 3 -4

Guidelines for Cursor Design

» Create cursors with parameters.

CURSOR cur_cust
I(p_crd_limit NUMBER, p acct mgr NUMBER) |

IS A

SELECT cusfomer id,| cust last name, cyst epail
FROM customers

WHERE credjt limit rd limit

AND acco
BEGIN
OPEN cur cus

(p_crd limit in, p acct mgr in)|;

CLOSE cur cust;

OPEN cur custl(v_credit limit, 145)|;

END;

* Benefit

— Parameters increase the cursor’s flexibility and reusability.
— Parameters help avoid scoping problems.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Guidelines for Cursor Design (continued)
Guideline
* Whenever you use a cursor in multiple places with different values for the WHERE clause,
create parameters for your cursor.

Benefit
1. Parameters increase the flexibility and reusability of cursors, because you can pass
different values to the WHERE clause when you open a cursor, rather than hard-code a
value for the WHERE clause.
2. Additionally, parameters help avoid scoping problems, because the result set for the cursor
is not tied to a specific variable in a program. You can define a cursor at a higher level and
use it in any subblock with variables defined in the local block.

Oracle Database 11g: Advanced PL/SQL 3 -5

Guidelines for Cursor Design

« Reference implicit cursor attributes immediately after the
SQL statement executes.

BEGIN
UPDATE customers

SET credit limit

p credit limit

WHERE customer id = p cust id;
|get_avg_order(p_cust_id); -- procedure call

IF SQL%SNOTFOUND THEN

« Benefit
— Doing so ensures that you are dealing with the result of the
correct SQL statement.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Guidelines for Cursor Design (continued)

Guideline
 Ifyou are using an implicit cursor and reference a SQL cursor attribute, make sure that you
reference it immediately after a SQL statement is executed.

Benefit

* SQL cursor attributes are set on the result of the most recently executed SQL statement.
The SQL statement can be executed in another program. Referencing a SQL cursor
attribute immediately after a SQL statement executes ensures that you are dealing with the
result of the correct SQL statement.

* In the example in the slide, you cannot rely on the value of SQL$¥NOTFOUND for the
UPDATE statement, because it is likely to be overwritten by the value of another SQL
statement in the get avg order procedure. To ensure accuracy, the SQL$NOTFOUND
cursor attribute function must be called immediately after the data manipulation language
(DML) statement:

Oracle Database 11g: Advanced PL/SQL 3 -6

Guidelines for Cursor Design

« Simplify coding with cursor FOR loops.

CREATE OR REPLACE PROCEDURE cust pack
(p_crd limit in NUMBER, p acct mgr in NUMBER)
Is
v_credit limit NUMBER := 1500;
CURSOR cur cust
(p_crd limit NUMBER, p acct mgr NUMBER)

IS

SELECT customer id, cust last name, cust email
FROM customers WHERE credit limit = p crd limit
AND account mgr id = p acct mgr;

BEGIN

rEOR cur rec IN cur cust (p crd limit in, p acct mgr in) |
LOOP -- implicit open and fetch
END LOOP; -- implicit close

END;

« Benefit

— Reduces the volume of code

— Automatically handles the open, fetch, and close operations,
and defines a record type that matches the cursor definition

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Guidelines for Cursor Design (continued)

Benefit (continued)
DECLARE
v_flag BOOLEAN;
BEGIN
UPDATE customers
SET credit limit = p credit limit

WHERE customer id = p cust id;
v_flag := SQL$NOTFOUND
get avg order(p cust id); -- procedure call

IF v_flag THEN

Guideline
* Whenever possible, use cursor FOR loops that simplify coding.

Benefit
1. Cursor FOR loops reduce the volume of code that you must write to fetch data from a
cursor and also reduce the chances of introducing loop errors in your code.
2. A cursor FOR loop automatically handles the open, fetch, and close operations, and defines
a record type that matches the cursor definition.
3. After it processes the last row, the cursor is closed automatically. If you do not use a cursor
FOR loop, forgetting to close your cursor results in increased memory usage.

Oracle Database 11g: Advanced PL/SQL 3 -7

Guidelines for Cursor Design

* Close a cursor when it is no longer needed.

« Use column aliases in cursors for calculated columns
fetched into records declared with $ROWTYPE.

CREATE OR REPLACE PROCEDURE cust list
IS
CURSOR cur cust IS
SELECT customer id, cust last name, credit limit*1.1

FROM customers; f
cust record cur cust%ROWTYPE;
BEGIN Use col. alias
OPEN cur cust;
LOOP

FETCH cur cust INTO cust record;
DBMS OUTPUT.PUT LINE('Customer ' ||
cust record.cust last name || ' wants credit '
| | cust record. (credit limit * 1.1)); <*t—
EXIT WHEN cur cust%NOTFOUND;
END LOOP;

o o o

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Guidelines for Cursor Design (continued)

» Ifyouno longer need a cursor, close it explicitly. If your cursor is in a package, its scope is
not limited to any particular PL/SQL block. The cursor remains open until you explicitly
close it. An open cursor takes up memory space and continues to maintain row-level locks,
if created with the FOR UPDATE clause, until a commit or rollback. Closing the cursor
releases memory. Ending the transaction by committing or rolling back releases the locks.
Along with a FOR UPDATE clause, you can also use a WHERE CURRENT OF clause with
the DML statements inside the FOR loop. This automatically performs a DML transaction
for the current row in the cursor’s result set, thereby improving performance.

Note: It is a good programming practice to explicitly close your cursors. Leaving cursors
open can generate an exception, because the number of cursors allowed to remain open
within a session is limited.

» Make sure that you use column aliases in your cursor for calculated columns that you fetch
into a record declared with a $ROWTYPE declaration. You would also use column aliases if
you want to reference the calculated column in your program.

The code in the slide does not compile successfully, because it lacks a column alias for the
credit limit*1.1 calculation. After you give it an alias, use the same alias later in the
code to make a reference to the calculation.

Oracle Database 11g: Advanced PL/SQL 3-8

Lesson Agenda

» Identifying guidelines for cursor design
» Using cursor variables
* Creating subtypes based on existing types

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 3 -9

Cursor Variables: Overview

Memory
1 Southlake, Texas 1400 - -
2 San Francisco 1500 CURSOR
3 New Jersey 1600 memory
4 Seattle, Washington 1700 locator
5 Toronto 1800

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Cursor Variables: Overview

Like a cursor, a cursor variable points to the current row in the result set of a multiple-row
query. Cursor variables, however, are like C pointers: they hold the memory location of an item
instead of the item itself. Thus, cursor variables differ from cursors the way constants differ from
variables. A cursor is static, a cursor variable is dynamic. In PL/SQL, a cursor variable has a
REF CURSOR data type, where REF stands for reference, and CURSOR stands for the class of

the object.
Using Cursor Variables

To execute a multiple-row query, the Oracle server opens a work area called a “cursor” to store
the processing information. To access the information, you either explicitly name the work area,
or you use a cursor variable that points to the work area. Whereas a cursor always refers to the
same work area, a cursor variable can refer to different work areas. Therefore, cursors and cursor
variables are not interoperable.

An explicit cursor is static and is associated with one SQL statement. A cursor variable can be
associated with different statements at run time.

Primarily, you use a cursor variable to pass a pointer to query result sets between PL/SQL-stored
subprograms and various clients, such as a Developer Forms application. None of them owns the
result set. They simply share a pointer to the query work area that stores the result set.

Oracle Database 11g: Advanced PL/SQL 3 -10

Working with Cursor Variables

oL — 7 -~
i = —
i ==
"sil ﬁ
Define and Open the Fetch rows Close the
declare the cursor from the cursor
cursor variable. result set. variable.
variable.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Working with Cursor Variables

There are four steps for handling a cursor variable. The next few sections contain detailed
information about each step.

Oracle Database 11g: Advanced PL/SQL 3 -11

Strong Versus Weak REF CURSOR Variables

- Strong REF CURSOR:
— Is restrictive
— Specifies a RETURN type
— Associates only with type-compatible queries
— Is less error prone
* Weak REF CURSOR:
— Is nonrestrictive
— Associates with any query
— s very flexible

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Strong Versus Weak REF CURSOR Variables

REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). A strong REF CURSOR
type definition specifies a return type; a weak definition does not. PL/SQL enables you to
associate a strong type only with type-compatible queries, whereas a weak type can be
associated with any query. This makes strong REF CURSOR types less prone to error, but weak
REF CURSOR types more flexible.

In the following example, the first definition is strong, whereas the second is weak:

DECLARE
TYPE rt cust IS REF CURSOR RETURN customers%ROWTYPE;

TYPE rt general purpose IS REF CURSOR;

Oracle Database 11g: Advanced PL/SQL 3 -12

Step 1: Defining a REF CURSOR Type

Define a REF CURSOR type:

TYPE ref type name IS REF CURSOR
[RETURN return typel;

« ref type nameis a type specified in subsequent
declarations.
* return type represents a record type.

* RETURN keyword indicates a strong cursor.

DECLARE
TYPE rt cust IS |REF CURSOR |
RETURN| customers%ROWTYPE;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Step 1: Defining a Cursor Variable
To create a cursor variable, you first define a REF CURSOR type, and then declare a variable of
that type.

Defining the REF CURSOR type:
TYPE ref type name IS REF CURSOR [RETURN return type];

where: ref type name is a type specified in subsequent declarations.
return type represents a row in a database table.

The REF keyword indicates that the new type is to be a pointer to the defined type. The
return_type is a record type indicating the types of the select list that are eventually
returned by the cursor variable. The return type must be a record type.

Example

DECLARE
TYPE rt cust IS REF CURSOR RETURN customers%ROWTYPE;

Oracle Database 11g: Advanced PL/SQL 3 -13

Step 1: Declaring a Cursor Variable

Declare a cursor variable of a cursor type:

cursor variable name ref type name;

* cursor variable name is the name of the cursor
variable.

* ref type nameisthe name of a REF CURSOR type.

DECLARE
TYPE rt cust IS REF CURSOR
RETURN customers%$ROWTYPE;

cv_cust rt cust;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Step 1: Declaring a Cursor Variable

After the cursor type is defined, declare a cursor variable of that type.
cursor variable name ref type name;

where: cursor variable name is the name of the cursor variable.

ref type name is the name of the REF CURSOR type.
Cursor variables follow the same scoping and instantiation rules as all other PL/SQL variables.
In the following example, you declare the cv_cust cursor variable.

Step 1:
DECLARE

TYPE ct_cust IS REF CURSOR RETURN customers%ROWTYPE;
cv_cust rt cust;

Oracle Database 11g: Advanced PL/SQL 3 -14

Step 1: Declaring a REF CURSOR
Return Type

Options:
 Use %TYPE and %ROWTYPE.
» Specify a user-defined record in the RETURN clause.

* Declare the cursor variable as the formal parameter of a
stored procedure or function.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Step 1: Declaring a REF CURSOR Return Type

The following are other examples of cursor variable declarations:
* Use $TYPE and $ROWTYPE to provide the data type of a record variable:

DECLARE
cust rec customers%ROWTYPE; --a recd variable based on a row
TYPE rt cust IS REF CURSOR RETURN cust rec%TYPE;
cv_cust rt cust; --cursor variable
* Specify a user-defined record in the RETURN clause:
DECLARE
TYPE cust rec typ IS RECORD
(custno NUMBER (4) ,
custname VARCHAR2 (10),
credit NUMBER(7,2)) ;

TYPE rt cust IS REF CURSOR RETURN cust rec_ typ;
cv_cust rt cust;

* Declare a cursor variable as the formal parameter of a stored procedure or function:

DECLARE
TYPE rt cust IS REF CURSOR RETURN customers%ROWTYPE;
PROCEDURE use cust cur_ var(cv_cust IN OUT rt cust)
IS ...

Oracle Database 11g: Advanced PL/SQL 3 -15

Step 2: Opening a Cursor Variable

« Associate a cursor variable with a multiple-row SELECT
statement.

* Execute the query.
* |dentify the result set:

OPEN cursor variable name

FOR select statement;

— cursor variable name is the name of the
cursor variable.

— select statement is the SQL SELECT statement.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Step 2: Opening a Cursor Variable

Other OPEN- FOR statements can open the same cursor variable for different queries. You do
not need to close a cursor variable before reopening it. You must note that when you reopen a
cursor variable for a different query, the previous query is lost.

In the following example, the packaged procedure declares a variable used to select one of
several alternatives in an IF THEN ELSE statement. When called, the procedure opens the
cursor variable for the chosen query.
CREATE OR REPLACE PACKAGE cust_ data
IS
TYPE rt cust IS REF CURSOR RETURN customers%ROWTYPE;
PROCEDURE open cust cur var(cv_cust IN OUT rt cust,

p_your choice IN NUMBER) ;
END cust data;

/

Oracle Database 11g: Advanced PL/SQL 3 -16

Step 2: Opening a Cursor Variable (continued)

CREATE OR REPLACE PACKAGE BODY cust_data
Is
PROCEDURE open_cust_cur_var (cv_cust IN OUT rt_ cust,
p_your choice IN NUMBER)
IS
BEGIN
IF p your choice = 1 THEN
OPEN cv_cust FOR SELECT * FROM customers;
ELSIF p your choice = 2 THEN
OPEN cv_cust FOR SELECT * FROM customers
WHERE credit limit > 3000;
ELSIF p your choice = 3 THEN
END IF;
END open cust cur var;
END cust data;

/

Oracle Database 11g: Advanced PL/SQL 3 -17

Step 3: Fetching from a Cursor Variable

* Retrieve rows from the result set one at a time.

FETCH cursor variable name
INTO variable namel
[,variable name2,. . .]

| record name;

* The return type of the cursor variable must be compatible
with the variables named in the INTO clause of the FETCH

statement.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Step 3: Fetching from a Cursor Variable

The FETCH statement retrieves rows from the result set one at a time. PL/SQL verifies that the
return type of the cursor variable is compatible with the INTO clause of the FETCH statement.
For each query column value returned, there must be a type-compatible variable in the INTO
clause. Also, the number of query column values must equal the number of variables. In case of
a mismatch in number or type, the error occurs at compile time for strongly typed cursor
variables and at run time for weakly typed cursor variables.

Note: When you declare a cursor variable as the formal parameter of a subprogram that fetches
from a cursor variable, you must specify the IN (or IN OUT) mode. If the subprogram also
opens the cursor variable, you must specify the IN OUT mode.

Oracle Database 11g: Advanced PL/SQL 3 -18

Step 4: Closing a Cursor Variable

 Disable a cursor variable.
 The result set is undefined.

CLOSE cursor variable name;

» Accessing the cursor variable after it is closed raises the
INVALID CURSOR predefined exception.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Step 4: Closing a Cursor Variable

The CLOSE statement disables a cursor variable, after which the result set is undefined. The
syntax is:

CLOSE cursor variable name;
In the following example, the cursor is closed when the last row is processed:
LOOP
FETCH cv_cust INTO cust rec;
EXIT WHEN cv_cust3NOTFOUND;

END LOOP;
CLOSE cv_cust;

Oracle Database 11g: Advanced PL/SQL 3 -19

Passing Cursor Variables as Arguments

You can pass query result sets among PL/SQL-stored
subprograms and various clients.

\

227
2.2 — 9 < €= 5QL> VARTABLE cv REFCURSOR
Zz- .
z” ," Pointer Access by a host variable
I to the

result on the client side

set

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Passing Cursor Variables as Arguments

Cursor variables are very useful for passing query result sets between PL/SQL-stored
subprograms and various clients. Neither PL/SQL nor any of its clients owns a result set; they
simply share a pointer to the query work area that identifies the result set. For example, an
Oracle Call Interface (OCI) client, or an Oracle Forms application, or the Oracle server can all
refer to the same work area. This might be useful in Oracle Forms, for instance, when you want
to populate a multiple-block form.

Example

Using SQL*Plus, define a host variable with a data type of REFCURSOR to hold the query
results generated from a REF CURSOR in a stored subprogram. Use the SQL*Plus PRINT
command to view the host variable results. Optionally, you can set the SQL*Plus command SET
AUTOPRINT ON to display the query results automatically.

SQL> VARIABLE cv REFCURSOR
Next, create a subprogram that uses a REF CURSOR to pass the cursor variable data back to the
SQL*Plus environment.
Note: You can define a host variable in SQL*Plus or SQL Developer. This slide uses SQL*Plus.
The next slide shows the use of SQL Developer.

Oracle Database 11g: Advanced PL/SQL 3 -20

Passing Cursor Variables as Arguments

& Oracle SOL Developer

File Edit “iew Mavigate BRun Debuy Source Migrstion Tools Help
Geoag 9« xEam 0-0- S- i
%Connecﬁons Repor‘ts] [Z] Doe_connecﬁon “} o0& _connection] |T (|
—_|w
E W ?’ |> % E?? ﬂ; @ @ E ﬁ 0 000966735 seconds loe_connedion '| %
9 Connections Erter SQOL Statemert: =
BRE Yoe_cornection execute cust_data.get_custillZ, :cw) -
‘E Tables print cw =
{E Wigws 4]]
Gﬁ Indexes -
- Packsges B> Resuts | (] Scrivt Output | EExcpiain | B Autotrace | @DEMS Cutout | @0we, Outout
B8 cusT_DaTA o8B A
- CUST_DATA Bady
A typ_cust_rec anonymous block completed
20 rt_cust o
- get_cust(NUMBER, rt_cust)
..... 8 Procedures CUSTOMER_ID CUST_FIRST NAME CREDIT LIMIT CUST_EMATL
B Eﬁ Functionz
[]---EE Triggers 112 Guillaume 200 Guillaune . Jackson@M]
E]----E Types
[]---E Sequences
- Materialized Views
[]----% Materialized Views Logs
-3 Synonyms
{3 Public Synaryms 7 T S
rﬁi [P N [e o 2ot

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Passing Cursor Variables as Arguments (continued)

CREATE OR REPLACE PACKAGE cust data AS
TYPE typ cust rec IS RECORD
(cust id NUMBER(6), custname VARCHAR2 (20),
credit NUMBER (9,2), cust email VARCHAR2 (30)) ;
TYPE rt cust IS REF CURSOR RETURN typ cust rec;
PROCEDURE get cust

(p_custid IN NUMBER, p cv_cust IN OUT rt cust);
END;

/

Oracle Database 11g: Advanced PL/SQL 3 - 21

Passing Cursor Variables as Arguments (continued)

CREATE OR REPLACE PACKAGE BODY cust data AS
PROCEDURE get cust
(p_custid IN NUMBER, p cv_cust IN OUT rt cust)
IS
BEGIN
OPEN p cv_cust FOR
SELECT customer id, cust first name, credit limit, cust email
FROM customers
WHERE customer id = p custid;
-- CLOSE p cv_cust
END;
END;
/

Note that the CLOSE p_cv_cust statement is commented. This is done because, if you close
the REF cursor, it 1s not accessible from the host variable.

Oracle Database 11g: Advanced PL/SQL 3 - 22

Using the sYs REFCURSOR Predefined Type

CREATE OR REPLACE PROCEDURE REFCUR
(p_num IN NUMBER)

IS

refcur sys refcursor; |4 SYS REFCURSOR is a built-in
empno emp . empno%TYPE; REF CURSOR type that allows
ename emp . ename%TYPE; any result set to be associated
BEGIN with it.

IF p num = 1 THEN
OPEN refcur FOR SELECT empno, ename FROM emp;

DBMS OUTPUT.PUT LINE ('Employee# Name') ;
DBMS OUTPUT.PUT LINE('----- = ------- ') ;
LOOP

FETCH refcur INTO empno, ename;
EXIT WHEN refcur%NOTFOUND;
DBMS_ OUTPUT.PUT LINE (empno || ' ' || ename);
END LOOP;
ELSE

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using the sYS REFCURSOR Predefined Type

You can define a cursor variable by using the built-in SYS REFCURSOR data type as well as by
creating a REF CURSOR type, and then declaring a variable of that type. SYS REFCURSOR is a
REF CURSOR type that allows any result set to be associated with it. As mentioned earlier, this
is known as a weak (nonrestrictive) REF CURSOR.

SYS REFCURSOR can be used to:
» Declare a cursor variable in an Oracle-stored procedure or function
* Pass cursors from and to an Oracle-stored procedure or function

Note: Strong (restrictive) REF CURSORS require the result set to conform to a declared number

and order of fields with compatible data types, and can also, optionally, return a result set.
CREATE OR REPLACE PROCEDURE REFCUR

(p_num IN NUMBER)

IS

refcur sys refcursor;

empno emp . empno$TYPE;
ename emp.ename$TYPE;
BEGIN

-- continued on the next page

Oracle Database 11g: Advanced PL/SQL 3 - 23

Using the sYs REFCURSOR Predefined Type (continued)

-- continued from the previous page
IF p_ num = 1 THEN
OPEN refcur FOR SELECT empno, ename FROM emp;
DBMS OUTPUT.PUT LINE ('Employee# Name') ;
DBMS OUTPUT.PUT LINE('----- = ------- ") ;
LOOP
FETCH refcur INTO empno, ename;
EXIT WHEN refcur3%NOTFOUND;
DBMS OUTPUT.PUT LINE (empno || " || ename) ;
END LOOP;
ELSE
OPEN refcur FOR
SELECT empno, ename
FROM emp WHERE deptno = 30;
DBMS OUTPUT.PUT LINE ('Employee# Name') ;
DBMS OUTPUT.PUT LINE ('
LOOP
FETCH refcur INTO empno, ename;
EXIT WHEN refcur3%NOTFOUND;
DBMS OUTPUT.PUT LINE (empno || " || ename);
END LOOP;
END IF;
CLOSE refcur;
END;
/

Oracle Database 11g: Advanced PL/SQL 3 -24

Rules for Cursor Variables

* You cannot use cursor variables with remote subprograms
on another server.

* You cannot use comparison operators to test cursor
variables.

* You cannot assign a null value to cursor variables.

* You cannot use REF CURSOR types in CREATE TABLE Or
VIEW statements.

« Cursors and cursor variables are not interoperable.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Restrictions

* Remote subprograms on another server cannot accept the values of cursor variables.
Therefore, you cannot use remote procedure calls (RPCs) to pass cursor variables from one
server to another.

 Ifyou pass a host cursor variable to PL/SQL, you cannot fetch from it on the server side
unless you open it in the server on the same server call.

* You cannot use comparison operators to test cursor variables for equality, inequality, or
nullity.

* You cannot assign NULLS to a cursor variable.

* You cannot use the REF CURSOR types to specify column types in a CREATE TABLE or
CREATE VIEW statement. So, database columns cannot store the values of cursor
variables.

* You cannot use a REF CURSOR type to specify the element type of a collection, which
means that the elements in an index by table, nested table, or VARRAY cannot store the
values of cursor variables.

» Cursors and cursor variables are not interoperable, that is, you cannot use one where the
other is expected.

Oracle Database 11g: Advanced PL/SQL 3 - 25

Comparing Cursor Variables
with Static Cursors

Cursor variables have the following benefits:
* Are dynamic and ensure more flexibility
* Are not tied to a single SELECT statement
* Hold the value of a pointer
« Can reduce network traffic

« Give access to query work areas after a
block completes

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Comparing Cursor Variables with Static Cursors

Cursor variables are dynamic and provide wider flexibility. Unlike static cursors, cursor
variables are not tied to a single SELECT statement. In applications where SELECT statements
may differ depending on various situations, the cursor variables can be opened for each of the
SELECT statements. Because cursor variables hold the value of a pointer, they can be easily
passed between programs, no matter where the programs exist.

Cursor variables can reduce network traffic by grouping OPEN FOR statements and sending
them across the network only once. For example, the following PL/SQL block opens two cursor

variables in a single round trip:
/* anonymous PL/SQL block in host environment */
BEGIN
OPEN :cv_cust FOR SELECT * FROM customers;
OPEN :cv_orders FOR SELECT * FROM orders;
END;

This may be useful in Oracle Forms, for instance, when you want to populate a multiple-block
form. When you pass host cursor variables to a PL/SQL block for opening, the query work areas
to which they point remain accessible after the block completes. This enables your OCI or
Pro*C program to use these work areas for ordinary cursor operations.

Oracle Database 11g: Advanced PL/SQL 3 - 26

Lesson Agenda

» Identifying guidelines for cursor design
» Using Cursor Variables
« Creating subtypes based on existing types

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 3 - 27

Predefined PL/SQL Data Types

Scalar Types Composite Types

BINARY_DOUBLE CHAR $ESS:D

BINARY_FLOAT CHARACTER VARRAY

BINARY_INTEGER LONG

DEC LONG RAW

DECIMAL NCHAR

DOUBLE PRECISION NVARCHAR2

FLOAT RAW

INT ROWID Reference Types

INTEGER STRING REF CURSOR

NATURAL UROWID REF object_type

NATURALN VARCHAR

NUMBER VARCHAR?2

NUMERIC

PLS_INTEGER BOOLEAN

POSITIVE LOB Types

POSITIVEN e BFILE

REAL

SIGNTYPE INTERVAL gtg:

SMALLINT TIMESTAMP NCLOB

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Predefined PL/SQL Data Types

Every constant, variable, and parameter has a data type, which specifies a storage format, a valid
range of values, and constraints. PL/SQL provides a variety of predefined data types. For
instance, you can choose from integer, floating point, character, Boolean, date, collection,
reference, and LOB types. In addition, PL/SQL enables you to define subtypes.

Oracle Database 11g: Advanced PL/SQL 3 - 28

Subtypes: Overview

A subtype is a subset of an existing data type that may place a
constraint on its base type.

— PL/SQL-predefined

+

Subtype

Scalar — User-defined
data type

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Subtypes: Overview

A subtype is a data type based on an existing data type. It does not define a new data type;
instead, it places a constraint on an existing data type. There are several predefined subsets
specified in the standard package. DECIMAL and INTEGER are subtypes of NUMBER.
CHARACTER is a subtype of CHAR.

Standard Subtypes

BINARY INTEGER NUMBER VARCHAR2
NATURAL DEC STRING
NATURALN DECIMAL VARCHAR
POSITIVE DOUBLE PRECISTION
POSITIVEN FLOAT
SIGNTYPE INTEGER

INT

NUMERIC

REAL

SMALLINT

Oracle Database 11g: Advanced PL/SQL 3 -29

Subtypes: Overview (continued)

With NATURAL and POSITIVE subtypes, you can restrict an integer variable to nonnegative
and positive values, respectively. NATURALN and POSITIVEN prevent the assigning of nulls to
an integer variable. You can use SIGNTYPE to restrict an integer variable to the values —1, 0,
and 1, which is useful in programming tri-state logic.

A constrained subtype is a subset of the values normally specified by the data type on which the
subtype is based. POSITIVE is a constrained subtype of BINARY INTEGER.

An unconstrained subtype is not a subset of another data type; it is an alias to another data type.
FLOAT is an unconstrained subtype of NUMBER.

Use the DEC, DECIMAL, and NUMERIC subtypes to declare fixed-point numbers with a
maximum precision of 38 decimal digits.

Use the DOUBLE PRECISION and FLOAT subtypes to declare floating-point numbers with a

maximum precision of 126 binary digits, which is roughly equivalent to 38 decimal digits. Or,
use the subtype REAL to declare floating-point numbers with a maximum precision of 63 binary

digits, which is roughly equivalent to 18 decimal digits.

Use the INTEGER, INT, and SMALLINT subtypes to declare integers with a maximum
precision of 38 decimal digits.

You can even create your own user-defined subtypes.

Note: You can use these subtypes for compatibility with ANSI/ISO and IBM types. Currently,
VARCHAR is synonymous with VARCHAR2. However, in future releases of PL/SQL, to
accommodate emerging SQL standards, VARCHAR may become a separate data type with
different comparison semantics. It is a good idea to use VARCHAR?2 rather than VARCHAR.

Oracle Database 11g: Advanced PL/SQL 3 -30

Benefits of Subtypes

Subtypes:
* Increase reliability
* Provide compatibility with ANSI/ISO and IBM types
* Promote reusability
* Improve readability
— Clarity
— Code self-documents

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Benefits of Subtypes

If your applications require a subset of an existing data type, you can create subtypes. By using
subtypes, you can increase the reliability and improve the readability by indicating the intended
use of constants and variables. Subtypes can increase reliability by detecting the out-of-range
values.

With predefined subtypes, you have compatibility with other data types from other programming
languages.

Oracle Database 11g: Advanced PL/SQL 3 - 31

Declaring Subtypes

« Subtypes are defined in the declarative section of a
PL/SQL block.

SUBTYPE subtype name IS base type [(constraint)]
[NOT NULL] ;

* subtype name is a type specifier used in subsequent
declarations.

* base typeis any scalar or user-defined
PL/SQL type.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Declaring Subtypes
Subtypes are defined in the declarative section of a PL/SQL block, subprogram, or package.

Using the SUBTYPE keyword, you name the subtype and provide the name of the base type.
You can use the $TYPE attribute on the base type to pick up a data type from a database column
or from an existing variable data type. You can also use the ¥ROWTYPE attribute.

Examples
CREATE OR REPLACE PACKAGE mytypes
IS
SUBTYPE Counter IS INTEGER; -- based on INTEGER type
TYPE typ TimeRec IS RECORD (minutes INTEGER, hours
INTEGER) ;
SUBTYPE Time IS typ TimeRec; -- based on RECORD type

SUBTYPE ID Num IS customers.customer id%TYPE;

CURSOR cur cust IS SELECT * FROM customers;

SUBTYPE CustFile IS cur cust%ROWTYPE; -- based on cursor
END mytypes;
/

Oracle Database 11g: Advanced PL/SQL 3 - 32

Using Subtypes

« Define a variable that uses the subtype in the declarative
section.

identifier name subtype name;

* You can constrain a user-defined subtype when declaring
variables of that type.

identifier name subtype name (size);

* You can constrain a user-defined subtype when declaring
the subtype.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Subtypes

After a subtype is declared, you can assign an identifier for that subtype. Subtypes can increase
reliability by detecting out-of-range values.
DECLARE
V_TOwSs mytypes.Counter; --use package subtype dfn
v_customers mytypes.Counter;
v_start time mytypes.Time;

SUBTYPE Accumulator IS NUMBER;

v_total Accumulator (4, 2) ;
SUBTYPE Scale IS NUMBER(1,0) ; -- constrained subtype

vV_X axis Scale; -- magnitude range is -9 .. 9
BEGIN

vV_rows := 1;

v_start time.minutes := 15;

v_start time.hours := 03;

dbms output.put line('Start time is: '||

v_start time.hours|| ':' || v _start time.minutes);
END;

/

Oracle Database 11g: Advanced PL/SQL 3 - 33

Subtype Compatibility

An unconstrained subtype is interchangeable with its base type.

DECLARE
[SUBTYPE Accumulator IS NUMBER (4,2); |
v_amount accumulator;
v_total
BEGIN
v_amount := 99.99;
v_total := 100.00;
dbms output.put line('Amount is: ' v_amount) ;
dbms output.put line('Total is: ' v_total);
v_total := v _amount;
dbms output.put line('This works too: ' ||
v_total);
-- v _amount := v_amount + 1; Will show value error
END;
/

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Subtype Compatibility

Some applications require constraining subtypes to a size specification for scientific purposes.
The example in the slide shows that if you exceed the size of your subtype, you receive an error.

An unconstrained subtype is interchangeable with its base type. Different subtypes are
interchangeable if they have the same base type. Different subtypes are also interchangeable if
their base types are in the same data type family.

DECLARE
V_Trows mytypes.Counter; Vv _customers mytypes.Counter;
SUBTYPE Accumulator IS NUMBER (6,2) ;
v_total NUMBER;

BEGIN

SELECT COUNT (*) INTO v_customers FROM customers;
SELECT COUNT (*) INTO V_Tows FROM orders;

v_total := v _customers + Vv _rows;
DBMS OUTPUT.PUT LINE ('Total rows from 2 tables: '||
v_total) ;

EXCEPTION

WHEN value error THEN
DBMS OUTPUT.PUT LINE('Error in data type.');
END;

Oracle Database 11g: Advanced PL/SQL 3 - 34

Quiz

Which of the following are true?

a. Fetching into a multiple variables when fetching from a
cursor gives you the advantage of automatic usage of the
structure of the SELECT column list.

b. Creating cursors with parameters helps in avoiding
scoping problems.

c. Close a cursor when it is no longer needed.
d. All of the above

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: b, ¢

Oracle Database 11g: Advanced PL/SQL 3 - 35

Quiz

Strong REF CURSOR:

a. Is nonrestrictive
Specifies a RETURN type

b
c. Associates only with type-compatible queries
d. Isless error prone

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: b, c, d

Oracle Database 11g: Advanced PL/SQL 3 - 36

Quiz

A subtype is a subset of an existing data type that may place a
constraint on its base type.

a. True
b. False

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: a

Oracle Database 11g: Advanced PL/SQL 3 - 37

Summary

In this lesson, you should have learned how to:
» Use guidelines for cursor design

« Declare, define, and use cursor variables
« Use subtypes as data types

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Summary

* Use the guidelines for designing the cursors.

» Take advantage of the features of cursor variables and pass pointers to result sets to
different applications.

* You can use subtypes to organize and strongly type data types for an application.

Oracle Database 11g: Advanced PL/SQL 3 - 38

Practice 3: Overview

This practice covers the following topics:
« Determining the output of a PL/SQL block
* Improving the performance of a PL/SQL block
* Implementing subtypes
» Using cursor variables

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Practice 3: Overview

In this practice, you determine the output of a PL/SQL code snippet and modify the snippet to

improve performance. Next, you implement subtypes and use cursor variables to pass values to
and from a package.

Oracle Database 11g: Advanced PL/SQL 3 -39

Working with Collections

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
» Create collections
— Nested table, varray
— Associative arrays/PLSQL tables
— Integer indexed
— String indexed
« Use collections methods
* Manipulate collections

« Distinguish between the different types of collections and
when to use them

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives
In this lesson, you are introduced to PL/SQL programming using collections.

A collection is an ordered group of elements, all of the same type (for example, phone numbers for
each customer). Each element has a unique subscript that determines its position in the collection.

Collections work like the set, queue, stack, and hash table data structures found in most third-
generation programming languages. Collections can store instances of an object type and can also be
attributes of an object type. Collections can be passed as parameters. So, you can use them to move
columns of data into and out of database tables, or between client-side applications and stored
subprograms. You can define collection types in a PL/SQL package, and then use the same types
across many applications.

Oracle Database 11g: Advanced PL/SQL 4 -2

Lesson Agenda

« Understanding collections

« Using associative arrays

* Using nested tables

* Using varrays

« Working with collections

* Programming for collection exceptions
* Summarizing collections

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 4 -3

Understanding Collections

« A collection is a group of elements, all of the
same type.

« Collections work like arrays.

» Collections can store instances of an object type and,
conversely, can be attributes of an object type.
« Types of collections in PL/SQL.:

— Associative arrays
— String-indexed collections
~ INDEX BY pls integer or BINARY INTEGER /

— Nested tables N\
/
— Varrays N
y :‘x‘f j(}r‘
-,{?

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Understanding Collections

A collection is a group of elements, all of the same type. Each element has a unique subscript that
determines its position in the collection. Collections work like the arrays found in most third-
generation programming languages. They can store instances of an object type and, conversely, can
be attributes of an object type. Collections can also be passed as parameters. You can use them to
move columns of data into and out of database tables, or between client-side applications and stored
subprograms.

Object types are used not only to create object relational tables, but also to define collections.

You can use any of the three categories of collections:

» Associative arrays (known as “index by tables” in previous Oracle releases) are sets of key-value
pairs, where each key is unique and is used to locate a corresponding value in the array. The key
can be an integer or a string.

* Nested tables can have any number of elements.

* A varray is an ordered collection of elements.

Note: Associative arrays indexed by pls integer are covered in the prerequisite courses—
Oracle Database 11g: Program with PL/SQL and Oracle Database 11g: Develop PL/SQL Program
Units—and are not emphasized in this course.

Oracle Database 11g: Advanced PL/SQL 4 -4

Collection Types

Associative array

Index by Index by
PLS INTEGER VARCHAR2
- AN aVa VR N\
VRR®WEE| RAO® @

Nested table Varray

e p—
T ijQ
| = S
—— — - mm
B _.-.F
- -
| e
I N |

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Collection Types

Associative Arrays

Associative arrays are sets of key-value pairs, where each key is unique and is used to locate a
corresponding value in the array. The key can be either integer-based (PLS INTEGER or
BINARY INTEGER) or character-based (VARCHAR2). Associative arrays may be sparse.

When you assign a value using a key for the first time, it adds that key to the associative array.
Subsequent assignments using the same key updates the same entry. However, it is important to
choose a key that is unique. For example, the key values may come from the primary key of a
database table, from a numeric hash function, or from concatenating strings to form a unique string
value.

Because associative arrays are intended for storing temporary data, you cannot use them with SQL
statements, such as INSERT and SELECT INTO. You can make them persistent for the life of a
database session by declaring the type in a package and assigning the values in a package body. They
are typically populated with a SELECT BULK COLLECT statement unless they are VARCHAR?2
indexed. BULK COLLECT prevents context switching between the SQL and PL/SQL engines, and is
much more efficient on large data sets.

Oracle Database 11g: Advanced PL/SQL 4-5

Collection Types (continued)
Nested Tables

A nested table holds a set of values. In other words, it is a table within a table. Nested tables are
unbounded; that is, the size of the table can increase dynamically. Nested tables are available in both
PL/SQL and the database. Within PL/SQL, nested tables are like one-dimensional arrays whose size
can increase dynamically. Within the database, nested tables are column types that hold sets of
values. The Oracle database stores the rows of a nested table in no particular order. When you
retrieve a nested table from the database into a PL/SQL variable, the rows are given consecutive
subscripts starting at 1. This gives you an array-like access to individual rows. Nested tables are
initially dense, but they can become sparse through deletions and, therefore, have nonconsecutive
subscripts.

Varrays

Variable-size arrays, or varrays, are also collections of homogeneous elements that hold a fixed
number of elements (although you can change the number of elements at run time). They use
sequential numbers as subscripts. You can define equivalent SQL types, thereby allowing varrays to
be stored in database tables. They can be stored and retrieved through SQL, but with less flexibility
than nested tables. You can reference the individual elements for array operations or manipulate the
collection as a whole.

Varrays are always bounded and never sparse. You can specify the maximum size of the varray in its
type definition. Its index has a fixed lower bound of 1 and an extensible upper bound. A varray can
contain a varying number of elements, from zero (when empty) to the maximum specified in its type
definition.

Choosing a PL/SQL Collection Type

If you already have code or business logic that uses another language, you can usually translate that
language’s array and set the types directly to the PL/SQL collection types.
* Arrays in other languages become varrays in PL/SQL.
» Sets and bags in other languages become nested tables in PL/SQL.
» Hash tables and other kinds of unordered lookup tables in other languages become associative
arrays in PL/SQL.

If you are writing original code or designing the business logic from the start, consider the strengths
of each collection type and decide which is appropriate.
Why Use Collections?

Collections offer object-oriented features such as variable-length arrays and nested tables that
provide higher-level ways to organize and access data in the database. Below the object layer, data is
still stored in columns and tables, but you are able to work with the data in terms of the real-world
entities, such as customers and purchase orders, that make the data meaningful.

Oracle Database 11g: Advanced PL/SQL 4 -6

Lesson Agenda

« Understanding collections

* Using associative arrays

* Using nested tables

* Using varrays

« Working with collections

* Programming for collection exceptions
* Summarizing collections

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 4 -7

Using Associative Arrays

Associative arrays:
* That are indexed by strings can improve performance

* Are pure memory structures that are much faster than
schema-level tables

* Provide significant additional flexibility

Associative arrays

Index by Index by
PLS INTEGER r‘-i @ @ @ @ E @ @ @ @ @ VARCHAR2

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Associative Arrays

Associative arrays (known as “index by tables” in previous Oracle releases) are sets of key-value
pairs, where each key is unique and is used to locate a corresponding value in the array. The key can
be an integer or a string.

When to Use String-Indexed Arrays

You can use INDEX BY VARCHAR?2 tables (also known as string-indexed arrays). These tables are
optimized for efficiency by implicitly using the B*-tree organization of the values.

The INDEX BY VARCHAR?2 table is optimized for efficiency of lookup on a nonnumeric key,
where the notion of sparseness is not applicable. In contrast, the INDEX BY PLS INTEGER tables
are optimized for compactness of storage on the assumption that the data is dense.

If you do heavy processing of customer information in your program that requires going back and

forth over the set of selected customers, you can use string-indexed arrays to store, process, and
retrieve the required information.

Note: Associative arrays indexed by PLS INTEGER are covered in the prerequisite courses—
Oracle Database 11g: Program with PL/SQOL and Oracle Database 11g: Develop PL/SQL Program
Units—and are not emphasized in this course.

Oracle Database 11g: Advanced PL/SQL 4 -8

Using Associative Arrays (continued)

Associative arrays (known as “index by tables” in previous Oracle releases) are sets of key-value
pairs, where each key is unique and is used to locate a corresponding value in the array. The key can
be an integer or a string.

This can also be done in SQL but probably in a less efficient implementation. If you do multiple
passes over a significant set of static data, you can instead move it from the database to a set of
collections. Accessing collection-based data is much faster than going through the SQL engine.

After transferring the data from the database to the collections, you can use string- and integer-based
indexing on those collections to, in essence, mimic the primary key and unique indexes on the table.

Oracle Database 11g: Advanced PL/SQL 4 -9

Creating the Array

Associative array in PL/SQL (string-indexed):

|TYPE| type name| IS TABLE OF | element type
INDEX BY VARCHAR2 (size)

CREATE OR REPLACE PROCEDURE report credit .
(p_last name customers.cust last name%TYPE, Create the string-indexed
p _credit limit customers.credit 1imit%TYPE) associative array type.
1s
TYPE typ name IS TABLE OF customers%ROWTYPE
INDEX BY customers.cust email%TYPE; Create the string-indexed
v_by cust emai typ_name; associative array variable.

i VARCHAR2 (30) ;

PROCEDURE load arrays IS
BEGIN
FOR rec IN (SELECT * FROM customers WHERE cust email IS NOT NULL)
LOOP
-- Load up the array in single pass to database table.

| v by cust email (rec.cust email) := rec;) :
END LOOP; Populate the string-indexed
associative array variable.

END;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Creating the Array
In the REPORT CREDIT procedure shown in the slide, you may need to determine whether a
customer has adequate credit. The string-indexed collection is loaded with the customer information
in the LOAD ARRAYS procedure. In the main body of the program, the collection is traversed to find
the credit information. The email name is reported in case more than one customer has the same last
name.

Oracle Database 11g: Advanced PL/SQL 4 -10

Traversing the Array

BEGIN
load arrays;
i:= v_by cust email.FIRST;
dbms_output.put line ('For credit amount of: ' || p credit limit);
WHILE i IS NOT NULL LOOP
IF v _by cust email (i) .cust last name = p last name
AND v_by cust email(i).credit limit > p credit limit
THEN dbms output.put line ('Customer '| |
v_by cust email(i).cust last name || ': ' ||
v_by cust email(i).cust email || ' has credit limit of: ' ||
v_by cust email(i).credit limit);
END IF;
i := v_by cust email .NEXT (i) ;
END LOOP;
END report credit;
/

EXECUTE report credit('Walken', 1200)
For credit amount of: 1200

Customer Walken: Emmet.Walken@LIMPKIN.COM has credit limit of: 3600
Customer Walken: Prem.Walken@BRANT.COM has credit limit of: 3700

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Traversing the Array
In this example, the string-indexed collection is traversed using the NEXT method.

A more efficient use of the string-indexed collection is to index the collection with the customer
email. Then you can immediately access the information based on the customer email key. You
would pass the email name instead of the customer last name.

Oracle Database 11g: Advanced PL/SQL 4 - 11

Using String-Indexed Arrays

Here is the modified code:
CREATE OR REPLACE PROCEDURE report credit
(p_email customers.cust email%TYPE,
p credit limit customers.credit 1imit%TYPE)
IS
TYPE typ name IS TABLE OF customers%ROWTYPE
INDEX BY customers.cust email%TYPE;
v_by cust email typ name;
i VARCHAR2 (30) ;

PROCEDURE load arrays IS
BEGIN
FOR rec IN (SELECT * FROM customers
WHERE cust email IS NOT NULL) LOOP

v_by cust email (rec.cust email) := rec;
END LOOP;
END;
BEGIN

load arrays;
dbms_ output.put line

('For credit amount of: ' || p credit limit);
IF v_by cust email (p_email) .credit limit > p credit limit
THEN dbms output.put line ('Customer '||

v_by cust email (p_email).cust last name ||
': ' || v_by cust email (p_email) .cust email ||
' has credit limit of: ' ||
v_by cust email (p_email) .credit limit);
END TIF;
END report credit;
/

EXECUTE report credit ('Prem.Walken@BRANT.COM', 100)

For credit amount of: 100
Customer Walken: Prem.Walken@BRANT.COM has credit limit of: 3700

PL/SQL procedure successfully completed.

Oracle Database 11g: Advanced PL/SQL 4 -12

Lesson Agenda

« Understanding collections

* Using associative arrays

* Using nested tables

* Using varrays

« Working with collections

* Programming for collection exceptions
* Summarizing collections

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 4 -13

Using Nested Tables

Nested table characteristics:
* A table within a table
* Unbounded
* Available in both SQL and PL/SQL as well as the database
* Array-like access to individual rows

Nested table:

,—gJQ
s | —
s — 1
| —
-
.
-
| .
|
I . |

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Nested Tables

A nested table holds a set of values. In other words, it is a table within a table. Nested tables are
unbounded, meaning that the size of the table can increase dynamically. Nested tables are available
in both PL/SQL as well as the database. Within PL/SQL, nested tables are like one-dimensional
arrays whose size can increase dynamically. Within the database, nested tables are column types that
hold sets of values. The Oracle database stores the rows of a nested table in no particular order.
When you retrieve a nested table from the database into a PL/SQL variable, the rows are given
consecutive subscripts starting at 1. This gives you an array-like access to individual rows.

Nested tables are initially dense, but they can become sparse through deletions and, therefore, have
nonconsecutive subscripts.

Oracle Database 11g: Advanced PL/SQL 4 - 14

Nested Table Storage

Nested tables are stored out-of-line in storage tables.

pOrder nested table:

ORDID SUPPLIER REQUESTER ORDERED ITEMS

500 50 5000 30-0CT-07

800 80 8000 31-0CT-07 ‘

Storage table: FU:ELbRE N8R RS ST PRICE
« 55 555
<= 56 566
« 57 577
NESTED TABLE ID PRODID PRICE
== 88 888

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Nested Table Storage

The rows for all nested tables of a particular column are stored within the same segment. This
segment is called the storage table.

A storage table is a system-generated segment in the database that holds instances of nested tables
within a column. You specify a name for the storage table by using the NESTED TABLE STORE
AS clause in the CREATE TABLE statement. The storage table inherits storage options from the
outermost table.

To distinguish between nested table rows belonging to different parent table rows, a system-
generated nested table identifier that is unique for each outer row enclosing a nested table is created.

Operations on storage tables are performed implicitly by the system. You should not access or
manipulate the storage table, except implicitly through its containing objects.

The column privileges of the parent table are transferred to the nested table.

Oracle Database 11g: Advanced PL/SQL 4 -15

Creating Nested Tables

To create a nested table in the database:
CREATE [OR REPLACE]| TYPE|type namd AS TABLE OF |

Element datatype [NOT NULL] ;

To create a nested table in PL/SQL:
type_name| IS TABLE OF| element datatype

[NOT NULL] ;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Creating Collection Types

To create a collection, you first define a collection type, and then declare collections of that type. The
slide shows the syntax for defining the nested table collection type in both the database (persistent)
and in PL/SQL (transient).

Creating Collections in the Database

You can create a nested table data type in the database, which makes the data type available to use in
places such as columns in database tables, variables in PL/SQL programs, and attributes of object

types.
Before you can define a database table containing a nested table, you must first create the data type
for the collection in the database.

Use the syntax shown in the slide to create collection types in the database.
Creating Collections in PL/SQL

You can also create a nested table in PL/SQL. Use the syntax shown in the slide to create collection
types in PL/SQL.

Note: Collections can be nested. Collections of collections are also possible.

Oracle Database 11g: Advanced PL/SQL 4 -16

Declaring Collections: Nested Table

* First, define an object type:

CREATE |[TYPE |typ item AS |[OBJECT | --create object @

(prodid NUMBER(5),
price NUMBER (7, 2))

CREATE |TYPE|typ item nst -- define nested table type
AS [TABLE OF typ item

/
* Second, declare a column of that collection type:

CREATE TABLE pOrder (-- create database table
ordid NUMBER (5) , <:>
supplier NUMBER (5) ,
requester NUMBER (4) ,
ordered DATE,
items typ item nst)

[NESTED TABLE|items STORE AS item stor tab

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Declaring Collections: Nested Table

To create a table based on a nested table, perform the following steps:

1. Create the typ item type, which holds the information for a single line item.

2. Create the typ item nst type, which is created as a table of the typ item type.

Note: You must create the typ item nst nested table type based on the previously declared
type, because it is illegal to declare multiple data types in this nested table declaration.

3. Create the pOrder table and use the nested table type in a column declaration, which includes
an arbitrary number of items based on the typ item nst type. Thus, each row of pOrder
may contain a table of items.

The NESTED TABLE STORE AS clause is required to indicate the name of the storage table
in which the rows of all values of the nested table reside. The storage table is created in the same
schema and the same tablespace as the parent table.

Note: The USER COLL_TYPES dictionary view holds information about collections.

Oracle Database 11g: Advanced PL/SQL 4 -17

Using Nested Tables

 Add data to the nested table:

INSERT INTO pOrder @
VALUES (500, 50, 5000, sysdate, typ item nst(
typ_item(55, 555),
typ_item(56, 566),
typ item (57, 577)));

INSERT INTO pOrder @
VALUES (800, 80, 8000, sysdate,

typ item nst (typ item (88, 888)));

pOrder nested table
PRODID PRICE
[T

55 555
500 50 5000 30-0CT-07 —> @
56 566
800 80 8000 31-0CT-07
57 577
PRODID PRICE
88 888 @

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Nested Tables
To insert data into the nested table, you use the INSERT statement. A constructor is a system-
defined function that is used to identify where the data should be placed, essentially “constructing”
the collection from the elements passed to it.
In the example in the slide, the constructors are TYP _ITEM NST () and TYP_ITEM (). You pass
two elements to the TYP_ITEM () constructor, and then pass the results to the TYP_ITEM NST ()
constructor to build the nested table structure.

The first INSERT statement builds the nested table with three subelement rows.

The second INSERT statement builds the nested table with one subelement row.

Oracle Database 11g: Advanced PL/SQL 4 -18

Using Nested Tables

* Querying the results:

SELECT * FROM porder;

ORDID SUPPLIER REQUESTER ORDERED

500 50 5000 31-OCT-07
TYP ITEM NST(TYP ITEM(55, 555), TYP ITEM(56, 566), TYP ITEM(57, 577))
800 80 8000 31-0OCT-07

TYP ITEM NST(TYP ITEM(88, 888))

* Querying the results with the TABLE function:

SELECT p2.ordid, pl.*
FROM porder p2, TABLE(p2.items) pl;

ORDID PRODID PRICE
800 88 888
500 57 577
500 55 555
500 56 566

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Nested Tables (continued)

You can use two general methods to query a table that contains a column or attribute of a collection
type. One method returns the collections nested in the result rows that contain them. By including the
collection column in the SELECT list, the output shows as a row associated with the other row output
in the SELECT list.

Another method to display the output is to unnest the collection such that each collection element
appears on a row by itself. You can use the TABLE expression in the FROM clause to unnest a

collection.

Querying Collections with the TABLE Expression

To view collections in a conventional format, you must unnest, or flatten, the collection attribute of a
row into one or more relational rows. You can do this by using a TABLE expression with the
collection. A TABLE expression enables you to query a collection in the FROM clause like a table. In
effect, you join the nested table with the row that contains the nested table without writing a JOIN
statement.

The collection column in the TABLE expression uses a table alias to identify the containing table.

Oracle Database 11g: Advanced PL/SQL 4 -19

Referencing Collection Elements

Use the collection name and a subscript to reference a
collection element:

« Syntax:

collection name (subscript)

 Example:

v _with discount (i)

« To reference a field in a collection:

p new items (i) .prodid

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Referencing Collection Elements
Every element reference includes a collection name and a subscript enclosed in parentheses. The
subscript determines which element is processed. To reference an element, you can specify its

subscript by using the following syntax:
collection name (subscript)

In the preceding syntax, subscript is an expression that yields a positive integer. For nested tables, the
integer must lie in the range 1 to 2147483647. For varrays, the integer must lie in the range 1 to
maximum_size.

Oracle Database 11g: Advanced PL/SQL 4 -20

Using Nested Tables in PL/SQL

CREATE OR REPLACE PROCEDURE add order items
(p_ordid NUMBER, p new items typ item nst)

IS
v_num items NUMBER ;
v_with discount typ item nst;
BEGIN
v num jitems := p new items.COUNT;
v_with discount := p new items;

IF v num items > 2 THEN
--ordering more than 2 items gives a 5% discount
FOR i IN 1..v num items LOOP
v_with discount (i) :=
typ item(p new items (i) .prodid,
p new items (i) .price*.95);
END LOOP;
END IF;
UPDATE pOrder
SET items = v _with discount
WHERE ordid = p ordid;
END;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Nested Tables in PL/SQL

When you define a variable of a collection type in a PL/SQL block, it is transient and available only
for the scope of the PL/SQL block.
In the example shown in the slide:
* The nested table P NEW_ITEMS parameter is passed into the block.
* Alocal variable V. WITH DISCOUNT is defined with the nested table data type
TYP ITEM NST.

* A collection method, called COUNT, is used to determine the number of items in the nested
table.

* If more than two items are counted in the collection, the local nested table variable
V_WITH DISCOUNT is updated with the product ID and a 5% discount on the price.

» To reference an element in the collection, the subscript i, representing an integer from the
current loop iteration, is used with the constructor method to identify the row of the nested table.

Oracle Database 11g: Advanced PL/SQL 4 - 21

Using Nested Tables in PL/SQL

-- caller pgm: v_form items variable
DECLARE

v_form items typ item nst:= typ item nst();
BEGIN

-- let's say the form holds 4 items 1804 63

v_form items.EXTEND (4) ; 3172 42

v_form items (1) typ item (1804, 65);

v_form items(2) typ item (3172, 42); 3337 800

v_form items(3) typ item (3337, 800);
v_£form_items (4) typ_item (2144, 14); AL 14
add order items (800, v_form items);

END;
The prices are added
Resulting data in the porder nested table after discounts.
ORDID SUPPLIER REQUESTER ORDERED ITEMS
500 50 5000 30-0CT-07 PRODID PRICE
800 80 8000 31-0CT-07 —P 1804 61.75
3172 39.9
3337 760
2144 13.3

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Nested Tables in PL/SQL (continued)

In the example code shown in the slide:

* A local PL/SQL variable of nested table type is declared and instantiated with the
TYP ITEM NST (). collection method

* The nested table variable is extended to hold four rows of elements with the EXTEND (4)
method.

* The nested table variable is populated with four rows of elements by constructing a row of the
nested table with the TYP_ITEM constructor.

» The nested table variable is passed as a parameter to the ADD ORDER _ITEMS procedure shown
on the previous page.

* The ADD ORDER_ITEMS procedure updates the ITEMS nested table column in the pOrder
table with the contents of the nested table parameter passed into the routine.

Oracle Database 11g: Advanced PL/SQL 4 - 22

Lesson Agenda

« Understanding collections

* Using associative arrays

* Using nested tables

« Using varrays

« Working with collections

* Programming for collection exceptions
* Summarizing collections

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 4 -23

Understanding Varrays

« To create a varray in the database:

CREATE [OR REPLACE] | TYPE| type name| AS VARRAY
(max elements) OF element datatype [NOT NULL] ;

« To create a varray in PL/SQL.:
type_name (max elements) OF

element datatype [NOT NULL] ;

Varray:

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Understanding Varrays

Varrays are also collections of homogeneous elements that hold a fixed number of elements
(although you can change the number of elements at run time). They use sequential numbers as
subscripts.

You can define varrays as a SQL type, thereby allowing varrays to be stored in database tables. They
can be stored and retrieved through SQL, but with less flexibility than nested tables. You can
reference individual elements for array operations, or manipulate the collection as a whole.

You can define varrays in PL/SQL to be used during PL/SQL program execution.

Varrays are always bounded and never sparse. You can specify the maximum size of the varray in its
type definition. Its index has a fixed lower bound of 1 and an extensible upper bound. A varray can
contain a varying number of elements, from zero (when empty) to the maximum specified in its type
definition.

To reference an element, you can use the standard subscripting syntax.

Oracle Database 11g: Advanced PL/SQL 4 - 24

Declaring Collections: Varray

« First, define a collection type:
CREATE typ Project| AS OBJECT|(--create object @

project no NUMBER (4),
title VARCHAR2 (35) ,
cost NUMBER (12,2))

/
CREATE typ ProjectList (50) OF typ Project

-- define VARRAY type
/

« Second, declare a collection of that type:

CREATE TABLE department (-- create database table (:)
dept id NUMBER(2),
name VARCHAR2 (25) ,
budget NUMBER (12,2) ,
projects| typ ProjectList)| -- declare varray as column
/
Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.
Example

The example in the slide shows how to create a table based on a varray.
1. Create the TYP PROJECT type, which holds the information for a project.
2. Create the TYP PROJECTLIST type, which is created as a varray of the project type. The
varray contains a maximum of 50 elements.
3. Create the DEPARTMENT table and use the varray type in a column declaration. Each element of
the varray will store a project object.

This example demonstrates how to create a varray of phone numbers, and then use it in a
CUSTOMERS table (The OE sample schema uses this definition.):
CREATE TYPE phone list typ
AS VARRAY (5) OF VARCHAR2 (25) ;
/
CREATE TABLE customers
(customer id NUMBER (6)
,cust first name VARCHAR2 (50)
,cust last name VARCHAR2 (50)
,cust address cust address typ(100)
,phone numbers phone list typ

) i

Oracle Database 11g: Advanced PL/SQL 4 -25

Using Varrays

Add data to the table containing a varray column:

INSERT INTO department @
VALUES (10, 'Exec Admn', 30000000,
typ ProjectList (
typ Project (1001, 'Travel Monitor', 400000),
typ Project (1002, 'Open World', 10000000))) ;

INSERT INTO department
VALUES (20, 'IT', 5000000,
typ ProjectList (
typ Project (2001, 'DB11lgR2', 900000)));

®

DEPARTMENT table

DEPT ID BUDGET PROJECTS
PROJECT NO TITLE

10 Exec Admn 30000000 1001 Travel Monitor 400000 @
1002 Open World 10000000

20 IT 5000000 2001 DB11gR2 900000 @

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Example (continued)

To add rows to the DEPARTMENT table that contains the PROJECTS varray column, you use the
INSERT statement. The structure of the varray column is identified with the constructor methods.
e TYP PROJECTLIST () constructor constructs the varray data type.
e TYP PROJECT () constructs the elements for the rows of the varray data type.

The first INSERT statement adds three rows to the PROJECTS varray for department 10.
The second INSERT statement adds one row to the PROJECTS varray for department 20.

Oracle Database 11g: Advanced PL/SQL 4 - 26

Using Varrays

* Querying the results:

SELECT * FROM department;

DEPT ID NAME BUDGET

10 Executive Administration 30000000
TYP PROJECTLIST (TYP_ PROJECT (1001, 'Travel Monitor', 400000),
TYP PROJECT (1002, 'Open World', 10000000))

20 Information Technology 5000000
TYP PROJECTLIST (TYP_PROJECT (2001, 'DB11lgR2', 900000))

* Querying the results with the TABLE function:

SELECT d2.dept id, d2.name, dl.*
FROM department d2, TABLE(d2.projects) dil;

DEPT ID NAME PROJECT NO TITLE COST
10 Executive Administration 1001 Travel Monitor 400000
10 Executive Administration 1002 Open World 10000000
20 Information Technology 2001 DB11gR2 900000

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Querying Varray Columns
You query a varray column in the same way that you query a nested table column.

In the first example in the slide, the collections are nested in the result rows that contain them. By
including the collection column in the SELECT list, the output shows as a row associated with the

other row output in the SELECT list.

In the second example, the output is unnested such that each collection element appears on a row by
itself. You can use the TABLE expression in the FROM clause to unnest a collection.

Oracle Database 11g: Advanced PL/SQL 4 - 27

Lesson Agenda

« Understanding collections

* Using associative arrays

* Using nested tables

* Using varrays

* Working with collections

* Programming for collection exceptions
* Summarizing collections

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 4 - 28

Working with Collections in PL/SQL

* You can declare collections as the formal parameters of
procedures and functions.
* You can specify a collection type in the RETURN clause of

a function specification.
» Collections follow the usual scoping and instantiation rules.

CREATE OR REPLACE PACKAGE manage dept proj
AS
PROCEDURE allocate new proj list
(p_dept id NUMBER, p name VARCHAR2, p budget NUMBER) ;
FUNCTION get dept project (p dept id NUMBER)
RETURN typ projectlist;
PROCEDURE update a project
(p_deptno NUMBER, p new project typ Project,
p_position NUMBER) ;
FUNCTION manipulate project (p dept id NUMBER)
RETURN typ projectlist;
FUNCTION check costs (p project list typ projectlist)
RETURN boolean;
END manage dept proj;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Working with Collections in PL/SQL

There are several points about collections that you must know when working with them:

* You can declare collections as the formal parameters of functions and procedures. That way, you
can pass collections to stored subprograms and from one subprogram to another.

* A function’s RETURN clause can be a collection type.

» Collections follow the usual scoping and instantiation rules. In a block or subprogram,
collections are instantiated when you enter the block or subprogram and cease to exist when you
exit. In a package, collections are instantiated when you first reference the package and cease to
exist when you end the database session.

Oracle Database 11g: Advanced PL/SQL 4 -29

Working with Collections: Example

This is the package body for the varray examples shown on the subsequent pages.
CREATE OR REPLACE PACKAGE BODY manage dept proj
AS
PROCEDURE allocate new proj list
(p_dept id NUMBER, p name VARCHAR2, p budget NUMBER)
IS
v_accounting project typ projectlist;
BEGIN -- this example uses a constructor
v_accounting project :=
typ ProjectList
(typ_Project (1, 'Dsgn New Expense Rpt',6 3250),
typ Project (2, 'Outsource Payroll',6 12350),
typ Project (3, 'Audit Accounts Payable', 1425)) ;
INSERT INTO department VALUES
(p_dept 1id, p_name, p budget, v _accounting project) ;
END allocate new proj list;

FUNCTION get dept project (p dept id NUMBER)
RETURN typ projectlist
IS
v_accounting project typ projectlist;
BEGIN
-- this example uses a fetch from the database
SELECT projects
INTO v _accounting project
FROM department
WHERE dept id = p_dept id;
RETURN v_accounting project;
END get dept project;

PROCEDURE update a project
(p_deptno NUMBER, p new project typ Project,
p position NUMBER)

IS
v_my projects typ ProjectList;
BEGIN
v_my projects := get dept project (p deptno);
v_my projects.EXTEND; --make room for new project

/* Move varray elements forward */
FOR i IN REVERSE p position..v_my projects.LAST - 1 LOOP

v_my projects(i + 1) := v _my projects(i);
END LOOP;
v_my projects(p position) := p new project; -- add new

-- project
UPDATE department SET projects = v_my projects
WHERE dept id = p_ deptno;
END update a project;
-- continued on next page

Oracle Database 11g: Advanced PL/SQL 4 -30

Working with Collections: Example (continued)

-- continued from previous page

FUNCTION manipulate project (p dept id NUMBER)
RETURN typ projectlist

IS
v_accounting project typ projectlist;
v_changed list typ projectlist;

BEGIN
SELECT projects

INTO v _accounting project
FROM department
WHERE dept id = p_dept id;

-- this example assigns one collection to another
v_changed list := v_accounting project;
RETURN v_changed list;

END manipulate project;

FUNCTION check costs (p project list typ projectlist)
RETURN boolean

IS
¢ _max_allowed NUMBER := 10000000;
i INTEGER;
v_flag BOOLEAN := FALSE;
BEGIN
i := p project 1list.FIRST ;

WHILE i IS NOT NULL LOOP
IF p project list(i).cost > c _max allowed then
v_flag := TRUE;
dbms output.put line (p project list(i).title ||
' exceeded allowable budget.');
RETURN TRUE;
END TIF;
i := p project 1list.NEXT (i) ;
END LOOP;
RETURN null;
END check costs;

END manage dept proj;

Oracle Database 11g: Advanced PL/SQL 4 - 31

Initializing Collections

Three ways to initialize:
« Use a constructor.
* Fetch from the database.
« Assign another collection variable directly.

PROCEDURE allocate new proj list
(p_dept id NUMBER, p name VARCHAR2, p budget NUMBER)
IS
v_accounting project typ projectlist;
BEGIN
-- this example uses a constructor
v_accounting project :=
| typ ProjectList |
(typ Project |(1, 'Dsgn New Expense Rpt', 3250),
typ Project |(2, 'Outsource Payroll', 12350),
typ Project |(3, 'Audit Accounts Payable',6 1425)) ;
INSERT INTO department
VALUES (p_dept id, p name, p budget, v accounting project);
END allocate new proj list;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Initializing Collections

Until you initialize it, a collection is atomically null (that is, the collection itself is null, not its
elements). To initialize a collection, you can use one of the following methods:

» Use a constructor, which is a system-defined function with the same name as the collection type.
A constructor allows the creation of an object from an object type. Invoking a constructor is a
way to instantiate (create) an object. This function “constructs” collections from the elements
passed to it. In the example shown in the slide, you pass three elements to the
typ ProjectList () constructor, which returns a varray containing those elements.

* Read an entire collection from the database using a fetch.

+ Assign another collection variable directly. You can copy the entire contents of one collection to
another as long as both are built from the same data type.

Oracle Database 11g: Advanced PL/SQL 4 - 32

Initializing Collections

FUNCTION get dept project (p dept id NUMBER)
RETURN typ projectlist (::)

IS

v_accounting project typ projectlist;

BEGIN -- this example uses a fetch from the database
SELECT |projects INTO v _accounting project

FROM department WHERE dept id = p dept id

RETURN v_accounting project;

END get dept project;

.
I

FUNCTION manipulate project (p dept id NUMBER)
RETURN typ projectlist

s O,
v_accounting project typ projectlist;
v_changed list typ projectlist;
BEGIN
SELECT projects INTO v _accounting project
FROM department WHERE dept id = p dept id;
-- this example assigns one collection to another
Lz=shanged_list := v_accounting project; |
RETURN v_changed list;
END manipulate project;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Initializing Collections (continued)

In the first example shown in the slide, an entire collection from the database is fetched into the local
PL/SQL collection variable.

In the second example in the slide, the entire content of one collection variable is assigned to another
collection variable.

Oracle Database 11g: Advanced PL/SQL 4 - 33

Referencing Collection Elements

-- sample caller program to the manipulate project function

DECLARE
v_result list typ projectlist;
BEGIN
v_result list := manage dept proj.manipulate project (10) ;

FOR i IN 1..v _result list.COUNT LOOP
dbms output.put line('Project #: !
| |v_result list(i).project no);

dbms output.put line('Title: '||v result list(i).title);
dbms_ output.put line('Cost: ' ||v _result list(i).cost);
END LOOP;
END;

Project #: 1001
Title: Travel Monitor
Cost: 400000

Project #: 1002
Title: Open World
Cost: 10000000

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Referencing Collection Elements
In the example in the slide, the code calls the MANIPULATE PROJECT function in the
MANAGE DEPT PROJ package. Department 10 is passed in as the parameter. The output shows the
varray element values for the PROJECTS column in the DEPARTMENT table for department 10.

Whereas the value of 10 is hard-coded, you can have a form interface to query the user for a
department value that can then be passed into the routine.

Oracle Database 11g: Advanced PL/SQL 4 - 34

Using Collection Methods

* EXISTS
* COUNT
e LIMIT

* FIRSTand LAST
* PRIOR and NEXT

e EXTEND
* TRIM
* DELETE

collection name.method name [(parameters)]

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Collection Methods

You can use collection methods from procedural statements but not from SQL statements.

Here is a list of some of the collection methods that you can use. You have already seen a few in the
preceding examples.

Oracle Database 11g: Advanced PL/SQL 4 - 35

Using Collection Methods (continued)

Function or | Description

Procedure

EXISTS Returns TRUE if the nth element in a collection exists; otherwise,
EXISTS (N) returns FALSE .

COUNT Returns the number of elements that a collection contains.

LIMIT For nested tables that have no maximum size, LIMIT returns NULL;
for varrays, LIMIT returns the maximum number of elements that a
varray can contain.

FIRST and | Returns the first and last (smallest and largest) index numbers in a

LAST collection, respectively.

PRIOR and | PRIOR (n) returns the index number that precedes index n in a

NEXT collection; NEXT (n) returns the index number that follows index n.

EXTEND Appends one null element. EXTEND (n) appends n elements;
EXTEND (n, i) appends n copies of the ith element.

TRIM Removes one element from the end; TRIM (n) removes n elements
from the end of a collection

DELETE Removes all elements from a nested or associative array table.

DELETE (n) removes the nth element ; DELETE (m,
range. Note: Does not work on varrays.

n) removes a

Oracle Database 11g: Advanced PL/SQL 4 - 36

Using Collection Methods

Traverse collections with the following methods:

FUNCTION check costs (p project list typ projectlist)
RETURN boolean

IS
¢ _max allowed NUMBER := 10000000;
i INTEGER;
v _flag BOOLEAN := FALSE;
BEGIN
i := p project list.FIRST ;

WHILE i IS NOT NULL LOOP
IF p project list(i).cost > c max allowed then
v_flag := TRUE;
dbms output.put line (p project list(i).title ||
exceeded allowable budget.');
RETURN TRUE;
END IF;
| i := p project list.NEXT(i); |
END LOOP;
RETURN null;
END check costs;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Traversing Collections

In the example in the slide, the FIRST method finds the smallest index number, the NEXT method
traverses the collection starting at the first index.

You can use the PRIOR and NEXT methods to traverse collections indexed by any series of
subscripts. In the example shown, the NEXT method is used to traverse a varray.

PRIOR (n) returns the index number that precedes index n in a collection. NEXT (n) returns the
index number that succeeds index n. If n has no predecessor, PRIOR (nn) returns NULL. Likewise, if
n has no successor, NEXT (n) returns NULL. PRIOR is the inverse of NEXT.

PRIOR and NEXT do not wrap from one end of a collection to the other.
When traversing elements, PRIOR and NEXT ignore deleted elements.

Oracle Database 11g: Advanced PL/SQL 4 - 37

Using Collection Methods

-- sample caller program to check costs
set serverout on

DECLARE

v_project list typ projectlist;
BEGIN

v_project list := typ ProjectList(

typ Project (1, 'Dsgn New Expense Rpt', 3250),

typ Project (2, 'Outsource Payroll', 120000),

typ Project (3, 'Audit Accounts Payable',14250000)); <~
IF manage dept proj.check costs (v _project list) THEN

dbms output.put line('Project rejected: overbudget') ;
ELSE

dbms output.put line('Project accepted, £fill out forms.');
END IF;

END;

Audit Accounts Payable exceeded allowable budget.

Project rejected: overbudget
e EEEEEEEE———————————... ..

, PROJECT NO TITLE COSTS
V_PROJECT LIST variable: =
1 Dsgn New Expense Rpt 3250
2 Outsource Payroll 120000
3 Audit Accounts Payable 14250000

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Traversing Collections (continued)
The code shown in the slide calls the CHECK COSTS function (shown on the previous page). The
CHECK_COSTS function accepts a varray parameter and returns a Boolean value. If it returns true,
the costs for a project element are too high. The maximum budget allowed for a project element is
defined by the C_ MAX ALLOWED constant in the function.
A project with three elements is constructed and passed to the CHECK COSTS function. The
CHECK_COSTS function returns true, because the third element of the varray exceeds the value of
the maximum allowed costs.
Although the sample caller program has the varray values hard-coded, you could have some sort of
form interface where the user enters the values for projects and the form calls the CHECK COSTS

function.

Oracle Database 11g: Advanced PL/SQL 4 - 38

Manipulating Individual Elements

PROCEDURE update a project
(p_deptno NUMBER, p new project typ Project, p position NUMBER)

IS
v_my projects typ ProjectList;
BEGIN
v_my projects := get dept project (p deptno);

I v_my projects.EXTEND; I --make room for new project
ove varray elements forward */
FOR i IN REVERSE p position. v my projects.LAST|- 1 LOOP

v_my projects(i + 1) := v _my projects(i);
END LOOP;

| v_my_projects(p_position)|:= P _new project; -- insert new one
department S projects = v _my projects
WHERE dept id = p deptno;
END update a project;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Manipulating Individual Elements

You must use PL/SQL procedural statements to reference the individual elements of a varray in an
INSERT, UPDATE, or DELETE statement. In the example shown in the slide, the

UPDATE A PROJECT procedure inserts a new project into a department’s project list at a given
position, and then updates the PROJECTS column with the newly entered value that is placed within
the old collection values.

This code essentially shuffles the elements of a project so that you can insert a new element in a
particular position.

Oracle Database 11g: Advanced PL/SQL 4 -39

Manipulating Individual Elements

-- check the table prior to the update:
SELECT d2.dept id, d2.name, dl.*
FROM department d2, TABLE(d2.projects) dil;

DEPT ID NAME PROJECT NO TITLE COST
10 Executive Administration 1001 Travel Monitor 400000
10 Executive Administration 1002 Open World 10000000
20 Information Technology 2001 DB11gR2 900000

-- caller program to update a project
BEGIN
manage dept proj.update a project (20,
typ Project (2002, 'AQM', 80000), 2);
END;

-- check the table after the update:
SELECT d2.dept id, d2.name, dl.*
FROM department d2, TABLE(d2.projects) dil;

DEPT ID NAME PROJECT NO TITLE COST
10 Executive Administration 1001 Travel Monitor 400000
10 Executive Administration 1002 Open World 10000000
20 Information Technology 2001 DB11gR2 900000
20 Information Technology 2002 AQM 80000

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Manipulating Individual Elements (continued)

To execute the procedure, pass the department number to which you want to add a project, the
project information, and the position where the project information is to be inserted.

The third code box shown in the slide identifies that a project element should be added to the second
position for project 2002 in department 20.

If you execute the following code, the AQM project element is shuffled to position 3 and the CQN
project element is inserted at position 2.
BEGIN
manage dept proj.update a project (20,
typ Project (2003, 'CQN', 85000), 2);
END;

What happens if you request a project element to be inserted at position 5?

Oracle Database 11g: Advanced PL/SQL 4 -40

Lesson Agenda

 Understanding collections

* Using associative arrays

* Using nested tables

* Using varrays

« Working with collections

« Programming for collection exceptions
* Summarizing collections

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 4 - 41

Avoiding Collection Exceptions

Common exceptions with collections:
* COLLECTION IS NULL

* NO DATA FOUND

* SUBSCRIPT BEYOND COUNT

* SUBSCRIPT OUTSIDE LIMIT
* VALUE ERROR

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Avoiding Collection Exceptions

In most cases, if you reference a nonexistent collection element, PL/SQL raises a predefined
exception.

Exception Raised when:

COLLECTION IS NULL You try to operate on an atomically null collection.

NO_DATA FOUND A subscript designates an element that was
deleted.

SUBSCRIPT_BEYOND_COUNT | A subscript exceeds the number of elements in a
collection.

SUBSCRIPT_OUTSIDE_LIMIT | A subscript is outside the legal range.

VALUE_ERROR A subscript is null or not convertible to an integer.

Oracle Database 11g: Advanced PL/SQL 4 -42

Avoiding Collection Exceptions: Example

Common exceptions with collections:

DECLARE
TYPE NumList IS TABLE OF NUMBER;
nums NumList; -- atomically null
BEGIN
/* Assume execution continues despite the raised exceptions.
*
/
nums (1) := 1; -- raises COLLECTION IS NULL
nums := NumList(1l,2); -- initialize table
nums (NULL) := 3 -- raises VALUE ERROR
nums (0) := 3; -- raises SUBSCRIPT OUTSIDE LIMIT
nums (3) := 3; -- raises SUBSCRIPT BEYOND COUNT
nums .DELETE (1) ; -- delete element 1
IF nums(l) = 1 THEN -- raises NO DATA FOUND

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Avoiding Collection Exceptions: Example

In the first case, the nested table is atomically null. In the second case, the subscript is null. In the
third case, the subscript is outside the legal range. In the fourth case, the subscript exceeds the

number of elements in the table. In the fifth case, the subscript designates an element that was
deleted.

Oracle Database 11g: Advanced PL/SQL 4 -43

Lesson Agenda

« Understanding collections

* Using associative arrays

* Using nested tables

* Using varrays

« Working with collections

* Programming for collection exceptions
« Summarizing collections

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 4 - 44

Listing Characteristics for Collections

PL/SQL PL/SQL DB PL/SQL
Nested Varrays Varrays Associative
Tables Arrays
Maximum |No No Yes Yes Dynamic
size
Sparsity |Can be No Dense Dense Yes
Storage |N/A Stored out-of- |N/A Stored inline [N/A
line (if < 4,000
bytes)
Ordering |Does not Does not Retains Retains Retains
retain ordering |retain ordering [ordering and |ordering and |ordering and
and subscripts |and subscripts |subscripts |subscripts |subscripts

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Choosing Between Nested Tables and Associative Arrays

» Use associative arrays when:
- You need to collect information of unknown volume.
- You need flexible subscripts (negative, nonsequential, or string-based).
- You need to pass the collection to and from the database server (use associative arrays with
the bulk constructs).
» Use nested tables when:
- You need persistence.
- You need to pass the collection as a parameter.

Choosing Between Nested Tables and Varrays

» Use varrays when:
- The number of elements is known in advance.
- The elements are usually all accessed in sequence.
» Use nested tables when:
- The index values are not consecutive.
- There is no predefined upper bound for the index values.
- You need to delete or update some, not all, elements simultaneously.
- You would usually create a separate lookup table with multiple entries for each row of the
main table and access it through join queries.

Oracle Database 11g: Advanced PL/SQL 4 -45

Guidelines for Using Collections Effectively

« Varrays involve fewer disk accesses and are more
efficient.

« Use nested tables for storing large amounts of data.

» Use varrays to preserve the order of elements in the
collection column.

« If you do not have a requirement to delete elements in the
middle of a collection, favor varrays.

* Varrays do not allow piecewise updates.

* After deleting the elements, release the unused memory
with DBMS SESSION.FREE UNUSED USER MEMORY

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Guidelines for Using Collections Effectively

» Because varray data is stored inline (in the same tablespace), retrieving and storing varrays
involves fewer disk accesses. Varrays are thus more efficient than nested tables.

» To store large amounts of persistent data in a column collection, use nested tables. Thus, the
Oracle server can use a separate table to hold the collection data, which can grow over time. For
example, when a collection for a particular row could contain 1 to 1,000,000 elements, a nested
table is simpler to use.

 If your data set is not very large and it is important to preserve the order of elements in a
collection column, use varrays. For example, if you know that the collection will not contain
more than 10 elements in each row, you can use a varray with a limit of 10.

 If you do not want to deal with deletions in the middle of the data set, use varrays.

 If you expect to retrieve the entire collection simultaneously, use varrays.

» Varrays do not allow piecewise updates.

+ After deleting the elements, you can release the unused memory with the
DBMS_SESSION.FREE_UNUSED USER MEMORY procedure.

Note: If your application requires negative subscripts, you can use only associative arrays.

Oracle Database 11g: Advanced PL/SQL 4 - 46

Quiz

Which of the following collection(s) is a set of key-value pairs,

where each key is unique and is used to locate a corresponding
value in the collection?

a. Associative arrays
b. Nested Table
c. Varray

d. Semsegs

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: a

Oracle Database 11g: Advanced PL/SQL 4 -47

Quiz

Which of the following collection(s) can be stored in the
database?

a. Associative arrays
b. Nested Table
c. Varray

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: b, c

Oracle Database 11g: Advanced PL/SQL 4 -48

Quiz

Which of the following collection(s) can be stored inline?
a. Associative arrays
b. Nested Table
c. Varray

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: c

Oracle Database 11g: Advanced PL/SQL 4 -49

Quiz

Which of the following collection method is use for traversing a

collection?

a. EXISTS
b. COUNT
c. LIMIT
d. FIRST

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: d

Oracle Database 11g: Advanced PL/SQL 4 -50

Summary

In this lesson, you should have learned how to:
* Identify types of collections
— Nested tables
— Varrays
— Associative arrays
« Define nested tables and varrays in the database

« Define nested tables, varrays, and associative arrays in
PL/SQL

— Access collection elements

— Use collection methods in PL/SQL

— ldentify raised exceptions with collections

— Decide which collection type is appropriate for each scenario

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Summary

Collections are a grouping of elements, all of the same type. The types of collections are nested
tables, varrays, and associative arrays. You can define nested tables and varrays in the database.
Nested tables, varrays, and associative arrays can be used in a PL/SQL program.

When using collections in PL/SQL programs, you can access the collection elements, use predefined
collection methods, and use the exceptions that are commonly encountered with collections.

There are guidelines for using collections effectively and for determining which collection type is
appropriate under specific circumstances.

Oracle Database 11g: Advanced PL/SQL 4 - 51

Practice 4: Overview

This practice covers the following topics:
* Analyzing collections
* Using collections

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Practice 4: Overview
In this practice, you analyze collections for common errors, create a collection, and then write a
PL/SQL package to manipulate the collection.

Use the OE schema for this practice.

For detailed instructions on performing this practice, see Appendix A, “Practice Solutions.”

Oracle Database 11g: Advanced PL/SQL 4 - 52

Manipulating Large Objects

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Create and maintain LOB data types

- Differentiate between internal and external L.OBs
« Use the DBMS LOB PL/SQL package

* Describe the use of temporary 1.OBs

« Enable SecureFile 1.OB deduplication, compression, and
encryption
« Migrate BasicFile LOBs to the SecureFile L.OB format

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

Databases have long been used to store large objects. However, the mechanisms built into databases
have never been as useful as the large object (LOB) data types that have been provided since Oracle8.

This lesson describes the characteristics of the new data types, comparing and contrasting them with
the earlier data types. Examples, syntax, and issues regarding the LOB types are also presented.

Note: A LOB is a data type and should not be confused with an object type.

Oracle Database 11g: Advanced PL/SQL 5 -2

Lesson Agenda

* Introduction to LOBs

 Managing BFILES by using the DBMS LOB package
 Manipulating LOB data

* Using temporary LOBs

« Using SecureFile LOB

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 5-3

What Is a LLOB?

LOBSs are used to store large, unstructured data such as text,
graphic images, films, and sound waveforms.

— 1 — P 4

SN C € N « (€ \’; «C €

=) i“\b <, i"\b <2 I'\b

el Wty re e
“Four score and seven years - - -
ago, our forefathers brought =~ = = - -~ ,)'\ - = .
forth upon this continent, a .«1 \\::1)
new nation, conceived in ’ﬁ\ — ’ﬁ\
LIBERTY, and dedicated to the

proposition that all men are
created equal.”

Movie (BFILE)

Text (CLOB) = Photo (BLOB)
|

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

LOB: Overview

A LOB is a data type that is used to store large, unstructured data such as text, graphic images, video
clippings, and so on. Structured data, such as a customer record, may be a few hundred bytes large,
but even small amounts of multimedia data can be thousands of times larger. Also, multimedia data
may reside in operating system (OS) files, which may need to be accessed from a database.
There are four large object data types:

e BLOB represents a binary large object, such as a video clip.

e CLOB represents a character large object.

e NCLOB represents a multiple-byte character large object.

e BFILE represents a binary file stored in an OS binary file outside the database. The BFILE

column or attribute stores a file locator that points to the external file.

LOBs are characterized in two ways, according to their interpretations by the Oracle server (binary or
character) and their storage aspects. LOBs can be stored internally (inside the database) or in host
files. There are two categories of LOBs:

 Internal LOBs (CLOB, NCLOB, BLOB): Stored in the database

» External files (BFILE): Stored outside the database

Oracle Database 11g: Advanced PL/SQL 5-4

LOB: Overview (continued)

Oracle Database 11g performs implicit conversion between CLOB and VARCHAR?2 data types. The
other implicit conversions between LOBs are not possible. For example, if the user creates a table T
with a CLOB column and a table S with a BLOB column, the data is not directly transferable between
these two columns.

BFILESs can be accessed only in read-only mode from an Oracle server.

Oracle Database 11g: Advanced PL/SQL 5-5

Components of a LOB

The 1.OB column stores a locator to the LOR’s value.

LOB locator l{l

LOB column LOB value
of a table

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Components of a LOB

There are two parts to a LOB:

e LOB value: The data that constitutes the real object being stored

e LOB locator: A pointer to the location of the LOB value that is stored in the database
Regardless of where the LOB value is stored, a locator is stored in the row. You can think of a LOB
locator as a pointer to the actual location of the LOB value.

A LOB column does not contain the data; it contains the locator of the LLOB value.

When a user creates an internal LOB, the value is stored in the LOB segment and a locator to the out-
of-line LOB value is placed in the LOB column of the corresponding row in the table. External LOBs
store the data outside the database, so only a locator to the LOB value is stored in the table.

To access and manipulate LOBs without SQL data manipulation language (DML), you must create a
LOB locator. The programmatic interfaces operate on the LOB values by using these locators in a
manner similar to OS file handles.

Oracle Database 11g: Advanced PL/SQL 5-6

Internal L.OBs

The 1.OB value is stored in the database.

v

“Four score and seven years ago,

our forefathers brought forth upon
this continent, a new nation,

conceived in LIBERTY, and dedicated
to the proposition that all men

are created equal.”

CLOB

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Internal LOBSs

An internal LOB is stored in the Oracle server. A BLOB, NCLOBRB, or CLOB can be one of the
following:

* An attribute of a user-defined type

* A column in a table

* A bind or host variable

» A PL/SQL variable, parameter, or result

Internal LOBs can take advantage of Oracle features, such as:
» Concurrency mechanisms
* Redo logging and recovery mechanisms
* Transactions with COMMIT or ROLLBACK
The BLOB data type is interpreted by the Oracle server as a bitstream, similar to the LONG RAW data

type.
The CLOB data type is interpreted as a single-byte character stream.

The NCLOB data type is interpreted as a multiple-byte character stream, based on the byte length of
the database national character set.

Oracle Database 11g: Advanced PL/SQL 5-7

Managing Internal LOBs

« To interact fully with LOB, file-like interfaces are provided
in:
— The DBMS_LOB PL/SQL package
— Oracle Call Interface (OCI)
— Oracle Objects for object linking and embedding (OLE)
— Pro*C/C++ and Pro*COBOL precompilers
— Java Database Connectivity (JDBC)
« The Oracle server provides some support for LOB
management through SQL.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Managing Internal L.OBs

To manage an internal LOB, perform the following steps:

1. Create and populate the table containing the LOB data type.

2. Declare and initialize the LOB locator in the program.

3. Use SELECT FOR UPDATE to lock the row containing the LOB into the LOB locator.

4. Manipulate the LOB with DBMS LOB package procedures, OCI calls, Oracle Objects for OLE,
Oracle precompilers, or JDBC by using the LOB locator as a reference to the LOB value. You
can also manage LOBs through SQL.

5. Use the COMMIT command to make any changes permanent.

Oracle Database 11g: Advanced PL/SQL 5-8

Lesson Agenda

* Introduction to LOBs

« Managing BFILES by using the DBMS LOB package
 Manipulating L.OB data

* Using temporary LOBs

« Using SecureFile LOB

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 5-9

What Are BFILES?

The BFILE data type supports an external or file-based large
object as:

« Attributes in an object type
* Column values in a table

A.‘/

-

Movie (BFILE)

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

What Are BFILES?

BFILESs are external large objects (LOBs) stored in OS files that are external to database tables. The
BFILE data type stores a locator to the physical file. A BFILE can be in GIF, JPEG, MPEG,
MPEG?2, text, or other formats. The external LOBs may be located on hard disks, CD-ROMs, photo
CDs, or other media, but a single LOB cannot extend from one medium or device to another. The
BFILE data type is available so that database users can access the external file system. Oracle
Database 11g provides:

* Definition of BFILE objects

+ Association of BFILE objects with the corresponding external files

» Security for BFILES
The remaining operations that are required for using BFILEs are possible through the DBMS LOB
package and OCI. BFILEs are read-only; they do not participate in transactions. Support for integrity
and durability must be provided by the operating system. The file must be created and placed in the
appropriate directory, giving the Oracle process privileges to read the file. When the LOB is deleted,
the Oracle server does not delete the file. Administration of the files and the OS directory structures
can be managed by the DBA, system administrator, or user. The maximum size of an external large
object depends on the operating system but cannot exceed 4 GB.
Note: BFILESs are available with the Oracle8 database and later releases.

Oracle Database 11g: Advanced PL/SQL 5-10

Securing BFILES

¢
[} » l—
>

User
A
[
I Access
: permissions

=

TNa!

\

-
(&

Movie (BFILE)

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Securing BFILES

Unauthenticated access to files on a server presents a security risk. Oracle Database 11g can act as a
security mechanism to shield the operating system from unsecured access while removing the need to
manage additional user accounts on an enterprise computer system.

File Location and Access Privileges

The file must reside on the machine where the database exists. A timeout to read a nonexistent
BFILE is based on the OS value.

You can read a BFILE in the same way that you read an internal LOB. However, there could be
restrictions related to the file itself, such as:

» Access permissions

* File system space limits

* Non-Oracle manipulations of files

* OS maximum file size

Oracle Database 11g does not provide transactional support on BFILEs. Any support for integrity

and durability must be provided by the underlying file system and the OS. Oracle backup and
recovery methods support only the LOB locators, not the physical BFILEs.

Oracle Database 11g: Advanced PL/SQL 5 -11

What Is a DIRECTORY?

C
[| -
>
User
DIRECTORY
LOB PATH =
' /oracle/lob/"
lu‘{

-

Movie (BFILE)

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

What Is a DIRECTORY?

A DIRECTORY is a nonschema database object that enables the administration of access and usage
of BFILESs in Oracle Database 11g. To associate an OS file with a BFILE, you should first create a
DIRECTORY object that is an alias for the full path name to the OS file.

By granting users suitable privileges for these items, you can provide secure access to files in the
corresponding directories on a user-by-user basis.

The DIRECTORY object is created by the DBA (or a user with the CREATE ANY DIRECTORY
privilege). They may differ from those defined for the DIRECTORY object and could change after
creation of the DIRECTORY object. Create DIRECTORY objects by using the following guidelines:

Directories should point to paths that do not contain database files, because tampering with these
files could corrupt the database.

The CREATE ANY DIRECTORY and DROP ANY DIRECTORY system privileges should be used
carefully and not granted to users indiscriminately.

DIRECTORY objects are not schema objects; all are owned by SYS.

Create the directory paths with appropriate permissions on the OS before creating the
DIRECTORY object. Oracle does not create the OS path.

If you migrate the database to a different OS, you may have to change the path value of the
DIRECTORY object.

Information about the DIRECTORY object that you create by using the CREATE DIRECTORY
command is stored in the DBA DIRECTORIES and ALL_DIRECTORIES data dictionary views.

Oracle Database 11g: Advanced PL/SQL 5-12

Using the DBMS 1.OB Package

« Working with LOBs often requires the use of the Oracle-
supplied DBMS LOB package.

* LOB data can be retrieved directly using SQL.

« In PL/SQL, you can define a VARCHAR2 for a CLOB and a
RAW for a BLOB.

 DBMS_LOB provides routines to access and manipulate
internal and external LOBS.

— Modify LOB values:
APPEND, COPY, ERASE, TRIM, WRITE, LOADFROMFILE

— Read or examine LOB values:
GETLENGTH, INSTR, READ, SUBSTR

— Specific to BFILES:
FILECLOSE, FILECLOSEALL, FILEEXISTS,
FILEGETNAME, FILEISOPEN, FILEOPEN

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using the DBMS LOB Package

To work with LOBs, you may have to use the DBMS LOB package. The package does not support
any concurrency control mechanism for BFILE operations. The user is responsible for locking the
row containing the destination internal LOB before calling subprograms that involve writing to the
LOB value. These DBMS_LOB routines do not implicitly lock the row containing the LOB.

The two constants, LOBMAXSIZE and FILE READONLY, that are defined in the package
specification are also used in the procedures and functions of DBMS LOB; for example, use them to
achieve the maximum level of purity in SQL expressions.

The DBMS LOB functions and procedures can be broadly classified into two types: mutators and
observers.
» The mutators can modify LOB values: APPEND, COPY, ERASE, TRIM, WRITE, FILECLOSE,
FILECLOSEALL, and FILEOPEN.
» The observers can read LOB values: COMPARE, FILEGETNAME, INSTR, GETLENGTH, READ,
SUBSTR, FILEEXISTS, and FILEISOPEN.

Oracle Database 11g: Advanced PL/SQL 5-13

DBMS LOB.READ and DBMS LOB.WRITE

PROCEDURE READ (
lobsrc IN BFILE|BLOB|CLOB ,
amount IN OUT BINARY INTEGER,
offset IN INTEGER,
buffer OUT RAW|VARCHAR2)

PROCEDURE WRITE (
lobdst IN OUT BLOB |CLOB,
amount IN OUT BINARY INTEGER,
offset IN INTEGER := 1,
buffer IN RAW|VARCHAR2) -- RAW for BLOB

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

DBMS LOB.READ

Call the READ procedure to read and return piecewise a specified AMOUNT of data from a given LOB,
starting from OFFSET. An exception is raised when no more data remains to be read from the source
LOB. The value returned in AMOUNT is less than the one specified if the end of the LOB is reached
before the specified number of bytes or characters can be read. In the case of CLOBs, the character
set of data in BUFFER is the same as that in the LOB.

PL/SQL allows a maximum length of 32,767 for RAW and VARCHAR?2 parameters. Ensure that the
allocated system resources are adequate to support buffer sizes for the given number of user sessions.
Otherwise, the Oracle server raises the appropriate memory exceptions.

Note: BLOB and BFILE return RAW; the others return VARCHAR?2.
DBMS LOB.WRITE

Call the WRITE procedure to write piecewise a specified AMOUNT of data into a given LOB, from the
user-specified BUFFER, starting from an absolute OFFSET from the beginning of the LOB value.

Make sure (especially with multiple-byte characters) that the amount in bytes corresponds to the
amount of buffer data. WRITE has no means of checking whether they match, and it will write
AMOUNT bytes of the buffer contents into the LOB.

Oracle Database 11g: Advanced PL/SQL 5-14

Managing BFILES

The DBA or the system administrator:
1. Creates an OS directory and supplies files
2. Creates a DIRECTORY object in the database

3. Grants the READ privilege on the DIRECTORY object to the
appropriate database users

The developer or the user:

4. Creates an Oracle table with a column that is defined as a
BFILE data type

5. Inserts rows into the table by using the BFILENAME
function to populate the BFILE column

6. Writes a PL/SQL subprogram that declares and initializes a
LOB locator, and reads BFILE

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Managing BFILES

Managing BFILES requires cooperation between the database administrator and the system
administrator, and then between the developer and the user of the files.

The database or system administrator must perform the following privileged tasks:
1. Create the operating system (OS) directory (as an Oracle user), and set permissions so that the
Oracle server can read the contents of the OS directory. Load files into the OS directory.
2. Create a database DIRECTORY object that references the OS directory.
3. Grant the READ privilege on the database DIRECTORY object to the database users that require
access to it.

The designer, application developer, or user must perform the following tasks:
4. Create a database table containing a column that is defined as the BFILE data type.
5. Insert rows into the table by using the BFILENAME function to populate the BFILE column,
associating the field to an OS file in the named DIRECTORY.

6. Write PL/SQL subprograms that:
a. Declare and initialize the BFILE LOB locator
b. Select the row and column containing the BFILE into the LOB locator
c. Read the BFILE with a DBMS LOB function, by using the locator file reference

Oracle Database 11g: Advanced PL/SQL 5-15

Preparing to Use BFILES

1. Create an OS directory to store the physical data files:

mkdir /home/oracle/labs/DATA FILES/MEDIA FILES

2. Create a DIRECTORY object by using the CREATE
DIRECTORY command:

CREATE OR REPLACE DIRECTORY data files AS
' /home/oracle/labs/DATA FILES/MEDIA FILES';

3. Grant the READ privilege on the DIRECTORY object to the
appropriate users:

GRANT READ ON DIRECTORY data files TO OE;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Preparing to Use BFILES

To use a BFILE within an Oracle table, you must have a table with a column of the BFILE data
type. For the Oracle server to access an external file, the server must know the physical location of
the file in the OS directory structure.

The database DIRECTORY object provides the means to specify the location of the BFILEs. Use the
CREATE DIRECTORY command to specify the pointer to the location where your BFILES are
stored. You must have the CREATE ANY DIRECTORY privilege.

Syntax definition: CREATE DIRECTORY dir name AS os_path;

In this syntax, dir name is the name of the directory database object, and os_path specifies the
location of the BFILEs.
The slide examples show the commands to set up:
 The physical directory (for example, /temp/data files) in the OS
* A named DIRECTORY object, called data_files, that points to the physical directory in the
OS
» The READ access right on the directory to be granted to users in the database that provides the
privilege to read the BFILEs from the directory
Note: The value of the SESSION_MAX OPEN_ FILES database initialization parameter, which is
set to 10 by default, limits the number of BFILESs that can be opened in a session.

Oracle Database 11g: Advanced PL/SQL 5-16

Populating BFILE Columns with SQL

« Use the BFILENAME function to initialize a BFILE column.
The function syntax is:

FUNCTION BFILENAME(directory;alias IN VARCHAR2,
filename IN VARCHAR2)

RETURN BFILE;

 Example:
— Add a BFILE column to a table:
ALTER TABLE customers ADD video BFILE;

— Update the column using the BFILENAME function:

UPDATE customers
SET video = BFILENAME ('DATA FILES', 'Winters.avi')

WHERE customer id = 448;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Populating BFILE Columns with SQL

The BFILENAME function is a built-in function that you use to initialize a BFILE column, by using

the following two parameters:
e directory alias for the name of the database DIRECTORY object that references the OS

directory containing the files
e filename for the name of the BFILE to be read

The BFILENAME function creates a pointer (or LOB locator) to the external file stored in a physical
directory, which is assigned a directory alias name that is used in the first parameter of the function.
Populate the BFILE column by using the BFILENAME function in either of the following:

* The VALUES clause of an INSERT statement

» The SET clause of an UPDATE statement
An UPDATE operation can be used to change the pointer reference target of the BFILE. A BFILE
column can also be initialized to a NULL value and updated later with the BFILENAME function, as
shown in the slide.
After the BFILE columns are associated with a file, subsequent read operations on the BFILE can

be performed by using the PL/SQL DBMS LOB package and OCI. However, these files are read-only
when accessed through BFILEs. Therefore, they cannot be updated or deleted through BFILEs.

Oracle Database 11g: Advanced PL/SQL 5-17

Populating a BFILE Column with PL/SQL

CREATE PROCEDURE set video(
dir alias VARCHAR2, custid NUMBER) IS
filename VARCHAR2 (40) ;
[file ptr BFILE; |
CURSOR cust csr IS
SELECT cust first name FROM customers
WHERE customer id = custid FOR UPDATE;

BEGIN
FOR rec IN cust csr LOOP
filename := rec.cust first name || '.gif';

file ptr := |[BFILENAME (dir alias, filename) ;|
[DBMS LOB.FILEOPEN (file ptr); |
UPDATE customers SET video = file ptr
WHERE CURRENT OF cust csr;
DBMS OUTPUT.PUT LINE('FILE:
' SIZE: '

DBMS LOB.FILECLOSE (file ptr
END LOOP;
END set wvideo;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Populating a BFILE Column with PL/SQL

The slide example shows a PL/SQL procedure called set video, which accepts the name of the

directory alias referencing the OS file system as a parameter, and a customer ID. The procedure
performs the following tasks:

» Uses a cursor FOR loop to obtain each customer record
* Sets the £ilename by appending . gif to the customer’s first name
* Creates an in-memory LOB locator for the BFILE inthe file ptr variable

 Calls the DBMS LOB.FILEOPEN procedure to verify whether the file exists, and to determine
the size of the file by using the DBMS LOB.GETLENGTH function

» Executes an UPDATE statement to write the BFILE locator value to the video BFILE column
* Displays the file size returned from the DBMS LOB.GETLENGTH function
* Closes the file by using the DBMS LOB.FILECLOSE procedure
Suppose that you execute the following call:
EXECUTE set video('DATA FILES', 844)
The sample result is:
FILE: Alice.gif SIZE: 2619802

filename |

Oracle Database 11g: Advanced PL/SQL 5-18

Using DBMS LOB Routines with BFILES

The DBMS LOB.FILEEXISTS function can check whether the
file exists in the OS. The function:

 Returns 0 if the file does not exist
 Returns 1 if the file does exist

CREATE OR REPLACE FUNCTION get filesize(p file ptr IN
OUT BFILE)
RETURN NUMBER IS
v _file exists BOOLEAN;
v_length NUMBER:= -1;
BEGIN
v _file exists := DBMS LOB.FILEEXISTS(p file ptr) = 1;
IF v _file exists THEN
DBMS LOB.FILEOPEN(p file ptr);
v_length := DBMS LOB.GETLENGTH(p file ptr);
DBMS LOB.FILECLOSE (p file ptr);
END IF;
RETURN v length;
END;
/

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using DBMS LOB Routines with BFILES

The set video procedure on the previous page terminates with an exception if a file does not
exist. To prevent the loop from prematurely terminating, you could create a function, such as
get filesize, to determine whether a given BFILE locator references a file that actually exists
on the server’s file system. The DBMS LOB.FILEEXISTS function accepts the BFILE locator as a
parameter and returns an INTEGER with:

* A value 0 if the physical file does not exist

» A value 1 if the physical file exists
If the BFILE parameter is invalid, one of the following three exceptions may be raised:

e NOEXIST DIRECTORY if the directory does not exist

e NOPRIV DIRECTORY if the database processes do not have privileges for the directory

e INVALID DIRECTORY if the directory was invalidated after the file was opened

In the get filesize function, the output of the DBMS LOB.FILEEXISTS function is
compared with value 1 and the result of the condition sets the BOOLEAN variable file exists.
The DBMS_LOB.FILEOPEN call is performed only if the file exists, thereby preventing unwanted
exceptions from occurring. The get filesize function returns a value of —1 if a file does not
exist; otherwise, it returns the size of the file in bytes. The caller can take appropriate action with this
information.

Oracle Database 11g: Advanced PL/SQL 5-19

Lesson Agenda

* Introduction to LOBs

 Managing BFILES by using the DBMS LOB package
* Manipulating L.LOB data

* Using temporary LOBs

« Using SecureFile LOB

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 5 -20

Initializing LOB Columns Added to a Table

* Add the LOB columns to an existing table by using ALTER
TABLE.

ALTER TABLE customers
ADD (resume CLOB, picture BLOB) ;

» Create a tablespace where you will put a new table with
the LOB columns.

CREATE TABLESPACE lob tbsl

DATAFILE 'lob tbsl.dbf' SIZE 800M REUSE
EXTENT MANAGEMENT LOCAL

UNIFORM SIZE 64M

SEGMENT SPACE MANAGEMENT AUTO;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Initializing LOB Columns Added to a Table

The contents of a LOB column are stored in the LOB segment, whereas the column in the table
contains only a reference to that specific storage area, called the LOB locator. In PL/SQL, you can
define a variable of the LOB type, which contains only the value of the LOB locator. You can
initialize the LOB locators by using the following functions:

e EMPTY CLOB () function to a LOB locator for a CLOB column

e EMPTY BLOB /() function to a LOB locator for a BLOB column

Note: These functions create the LOB locator value and not the LOB content. In general, you use the
DBMS_LOB package subroutines to populate the content. The functions are available in Oracle SQL
DML, and are not part of the DBMS LOB package.

LOB columns are defined by using SQL data definition language (DDL). You can add LOB columns
to an existing table by using the ALTER TABLE statement.

You can also add LOB columns to a new table. It is recommended that you create a tablespace first,
and then create the new table in that tablespace.

Oracle Database 11g: Advanced PL/SQL 5 - 21

Initializing LOB Columns Added to a Table

Initialize the column LOB locator value with the DEFAULT option
or the DML statements using:

« EMPTY CLOB () function for a CLOB column
« EMPTY BLOB /() function for a BLOB column

CREATE TABLE customer profiles (
id NUMBER,

full name VARCHAR2 (45) ,
resume CLOB DEFAULT EMPTY CLOB(),
picture BLOB DEFAULT EMPTY BLOB())

LOB (picture) STORE AS BASICFILE
(TABLESPACE lob tbsl);

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Initializing LOB Columns Added to a Table (continued)

The slide example shows that you can use the EMPTY CLOB () and EMPTY BLOB () functions in
the DEFAULT option in a CREATE TABLE statement. Thus, the LOB locator values are populated in
their respective columns when a row is inserted into the table and the LOB columns were not
specified in the INSERT statement.

The CUSTOMER PROFILES table is created. The PICTURE column holds the LOB data in the
BasicFile format, because the storage clause identifies the format.

Oracle Database 11g: Advanced PL/SQL 5 - 22

Populating LOB Columns

 Insert a row into a table with LOB columns:

INSERT INTO customer profiles
(id, full name, resume, picture)
VALUES (164, 'Charlotte Kazan', EMPTY CLOB(), NULL);

 Initialize a LOB using the EMPTY BLOB () function:

UPDATE customer profiles
SET resume = 'Date of Birth: 8 February 1951°',
picture = EMPTY BLOB()
WHERE id = 164;

» Update a CLOB column:

UPDATE customer profiles
SET resume = 'Date of Birth: 1 June 1956'
WHERE id = 150;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Populating LOB Columns

You can insert a value directly into a LOB column by using host variables in SQL or PL/SQL, 3GL-
embedded SQL, or OCI. You can use the special EMPTY BLOB ()and EMPTY CLOB () functions
in INSERT or UPDATE statements of SQL DML to initialize a NULL or non-NULL internal LOB to
empty. To populate a LOB column, perform the following steps:

1. Initialize the LOB column to a non-NULL value—that is, set a LOB locator pointing to an empty
or populated LOB value. This is done by using the EMPTY BLOB () and EMPTY CLOB ()
functions.

2. Populate the LOB contents by using the DBMS LOB package routines.

However, as shown in the slide examples, the two UPDATE statements initialize the resume LOB

locator value and populate its contents by supplying a literal value. This can also be done in an
INSERT statement. A LOB column can be updated to:

* Another LOB value
* A NULL value
* A LOB locator with empty contents by using the EMPTY *LOB () built-in function
You can update the LOB by using a bind variable in embedded SQL. When assigning one LOB to

another, a new copy of the LOB value is created. Use a SELECT FOR UPDATE statement to lock the
row containing the LOB column before updating a piece of the LOB contents.

Oracle Database 11g: Advanced PL/SQL 5 -23

Writing Data to a L.OB

* Create the procedure to read the MS Word files and load
them into the LOB column.

« Call this procedure from the WRITE LOB procedure
(shown on the next page).

CREATE OR REPLACE PROCEDURE loadLOBFromBFILE proc
(p_dest loc IN OUT BLOB, p file name IN VARCHAR2,
p file dir IN VARCHAR2)

Is
v_src _loc BFILE := BFILENAME(p file dir, p file name);
v_amount INTEGER := 4000;

BEGIN
DBMS LOB.OPEN(v_src loc, DBMS LOB.LOB READONLY) ;
v_amount := DBMS LOB.GETLENGTH(v_src loc);

DBMS LOB.LOADFROMFILE (p _dest loc, v _src loc, v_amount);
DBMS LOB.CLOSE (v src loc);
END loadLOBFromBFILE proc;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Writing Data to a LOB

The procedure shown in the slide is used to load data into the LOB column.

Before running the LOADLOBFROMBFILE PROC procedure, you must set a directory object that
identifies where the LOB files are stored externally. In this example, the Microsoft Word documents
are stored in the DATA FILES directory that was created earlier in this lesson.

The LOADLOBFROMBFILE PROC procedure is used to read the LOB data into the PICTURE
column in the CUSTOMER PROFILES table.

In this example:

DBMS LOB.OPEN is used to open an external LOB in read-only mode.
DBMS_LOB.GETLENGTH is used to find the length of the LOB value.

DBMS LOB.LOADFROMFILE is used to load the BFILE data into an internal LOB.
DBMS_LOB.CLOSE is used to close the external LOB.

Note: The LOADLOBFROMBFILE PROC procedure shown in the slide can be used to read both
SecureFile and BasicFile formats. SecureFile LOBs is discussed later in this lesson.

Oracle Database 11g: Advanced PL/SQL 5 -24

Writing Data to a L.OB

Create the procedure to insert 1.OBs into the table:

CREATE OR REPLACE PROCEDURE write lob
(p_file IN VARCHAR2, p dir IN VARCHAR2)
IS
i NUMBER; v_fn VARCHAR2 (15) ;
v_1n VARCHAR2 (40) ; v_b BLOB;
BEGIN
DBMS OUTPUT.ENABLE;
DBMS OUTPUT.PUT LINE('Begin inserting rows...');
FOR i IN 1 .. 30 LOOP
v_fn:=SUBSTR(p file,1,INSTR(p file,'.')-1);
v_1n:=SUBSTR(p_file, INSTR(p file,'.')+1,LENGTH(p_ file) -
INSTR(p file,'.')-4);
INSERT INTO customer profiles
VALUES (i, v_fn, v_1ln, EMPTY BLOB())
RETURNING picture INTO v b;
loadLOBFromBFILE proc(v _b,p file, p dir);
DBMS_OUTPUT.PUT LINE('Row '|| i ||' inserted.');
END LOOP;
COMMIT;
END write lob;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Writing Data to a LOB (continued)

Before you write data to the LOB column, you must make the LOB column non-NULL. The LOB
column must contain a locator that points to an empty or populated LOB value. You can initialize a
BLOB column value by using the EMPTY BLOB () function as a default predicate.

The code shown in the slide uses the INSERT statement to initialize the locator. The
LOADLOBFROMBFILE routine is then called and the LOB column value is inserted.

The write and read performance statistics for LOB storage is captured through output messages.

Oracle Database 11g: Advanced PL/SQL 5 -25

Writing Data to a L.OB

CREATE OR REPLACE DIRECTORY resume_files AS
' /home/oracle/labs/DATA FILES/RESUMES';

set serveroutput on
set verify on
set term on

timing start load data

execute write lob('karl.brimmer.doc', 'RESUME FILES')
execute write lob('monica.petera.doc', 'RESUME FILES')
execute write lob('david.sloan.doc', 'RESUME FILES')
timing stop

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Writing Data to a LOB (continued)

1. The Microsoft Word files are stored in the
/home/oracle/labs/DATA FILES/RESUMES directory.

2. To read them into the PICTURE column in the CUSTOMER PROFILES table, the
WRITE_ LOB procedure is called and the name of the . doc files is passed as a parameter.

Note: This script is run in SQL*Plus, because TIMING is a SQL*Plus option and is not available in
SQL Developer.

Oracle Database 11g: Advanced PL/SQL 5 - 26

Writing Data to a LOB (continued)

The output is similar to the following:
timing start load data
execute write lob('karl.brimmer.doc', 'RESUME FILES') ;
Begin inserting rows...
Row 1 inserted.

PL/SQL procedure successfully completed.

execute write lob('monica.petera.doc', 'RESUME FILES') ;
Begin inserting rows...

Row 1 inserted.

PL/SQL procedure successfully completed.

execute write lob('david.sloan.doc', 'RESUME FILES') ;
Begin inserting rows...

Row 1 inserted.

PL/SQL procedure successfully completed.

timing stop

timing for: load data
Elapsed: 00:00:00.96

Oracle Database 11g: Advanced PL/SQL 5 - 27

Reading L.OBs from the Table

CREATE OR REPLACE PROCEDURE read lob
Is
v_lob loc BLOB;
CURSOR profiles cur IS
SELECT id, full name, resume, picture
FROM customer profiles;
v_profiles rec customer profiles%ROWTYPE;
BEGIN
OPEN profiles cur;
LOOP
FETCH profiles cur INTO v _profiles rec;
v_lob loc := v profiles rec.picture;
DBMS_OUTPUT.PUT LINE('The length is: '||
DBMS_LOB.GETLENGTH (v_lob loc)) ;
DBMS_OUTPUT.PUT LINE('The ID is: '|| v_profiles rec.id);
DBMS OUTPUT.PUT LINE('The blob is read: '||
UTL RAW.CAST TO VARCHAR2 (DBMS_ LOB.SUBSTR(v_lob loc,200,1)));
EXIT WHEN profiles cur%NOTFOUND;
END LOOP;
CLOSE profiles cur;
END;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Reading L.OBs from the Table

To retrieve the records that were inserted, you can call the READ LOB procedure:
set serveroutput on
set verify on
set term on
set linesize 200

timing start read data
execute read lob;
timing stop

The commands shown in the slide read back the 90 records from the CUSTOMER PROFILES table.
For each record, the size of the LOB value plus the first 200 characters of the LOB are displayed on
the screen. A SQL*Plus timer is started to capture the total elapsed time for the retrieval.

Oracle Database 11g: Advanced PL/SQL 5 - 28

Reading L.OBs from the Table (continued)

The output is similar to the following:
The ID is: 1
The blob is read: ¢4¢~¢ > éé r x
Tz 1 el W

cdecdddeaeeddeeaeaeddLeLaedddeLaeadLLLLeddeLeaeedeLLLaedLLeLaeae
The length is: 64000
The ID is: 2

The blob is read: ¢4¢~¢ > bose - r x
t z o ceee w

The length is: 37376

The ID is: 30

The blob is read: ¢4¢~¢ > b ose - r D

TOF 1 e C

cedaededddedaededLleaaeeLleawaddLaeeeLLaeueLLaeaeeLLLeaeaLeLLeaueaLaeaea

The length is: 37376

The ID is: 30

The blob is read: ¢4:~¢ > & r D
TOF 1 e C

ddedLdeeeLaedeedLeeeLedeedeLeeLeeeeaLeeLaLeeeaeLeeLeaeeaee

PL/SQL procedure successfully completed.
timing stop

timing for: read data
Elapsed: 00:00:01.09

Note: The text shown on this page is intentional. The text appears as gibberish, because it is a binary
file.

Oracle Database 11g: Advanced PL/SQL 5 -29

Updating L.OB by Using DBMS LOB in PL/SQL

DECLARE
v_lobloc CLOB; -- serves as the LOB locator
v_text VARCHAR2 (50) := 'Resigned = 5 June 2000';
v_amount NUMBER ; -- amount to be written
v_offset INTEGER; -- where to start writing

BEGIN

SELECT resume INTO v _lobloc FROM customer profiles

WHERE id = 164 FOR UPDATE;

v _offset p= DBMS LOB.GETLENGTH (v lobloc) + 2; |

v amount := length (v text);

DBMS LOB.WRITE (v_lobloc, v _amount, v offset, v text);

v_text := ' Resigned = 30 September 2000°';

SELECT resume INTO v_lobloc FROM customer profiles

WHERE id = 150 FOR UPDATE;

v amount := length(v text);
|DBMS_LOB.WRITEAPPEND(v_lobloc, v_amount, v text) ;|
COMMIT;

END ;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Updating L.oB by Using DBMS LOB in PL/SQL

In the example in the slide, the LOBLOC variable serves as the LOB locator, and the AMOUNT
variable is set to the length of the text that you want to add. The SELECT FOR UPDATE statement
locks the row and returns the LOB locator for the RESUME LOB column. Finally, the PL/SQL WRITE
package procedure is called to write the text into the LOB value at the specified offset.
WRITEAPPEND appends to the existing LOB value.

The example shows how to fetch a CLOB column in releases before Oracle9i. In those releases, it was
not possible to fetch a CLOB column directly into a character column. The column value must be
bound to a LOB locator, which is accessed by the DBMS LOB package. An example later in this
lesson shows that you can directly fetch a CLOB column by binding it to a character variable.

Oracle Database 11g: Advanced PL/SQL 5 -30

Checking the Space Usage of a L.OB Table

CREATE OR REPLACE PROCEDURE check space
Is

1l fsl1 bytes NUMBER;

1l f£s2 bytes NUMBER;

BEGIN
DBMS SPACE.SPACE USAGE (

segment owner => 'OE',
segment name => 'CUSTOMER PROFILES',
segment type => 'TABLE',
fsl bytes => 1 fsl bytes,
fsl blocks => 1 fsl blocks,
fs2 bytes => 1 £s2 bytes,
fs2 blocks => 1 f£s2 blocks,

);
DBMS OUTPUT.ENABLE;
DBMS OUTPUT.PUT LINE(' FS1 Blocks
Bytes = '||1l £sl bytes);
DBMS OUTPUT.PUT LINE(' FS2 Blocks
Bytes = '||1l £s2 bytes); ..
DBMS_OUTPUT.PUT_LINE (l=======================================) 7
DBMS OUTPUT.PUT LINE('Total Blocks =
'||to_char (1l fsl blocks + 1 fs2 blocks ..));
END;
/

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Checking the Space Usage of a LOB Table

To check the space usage in the disk blocks allocated to the LOB segment in the
CUSTOMER PROFILES table, use the CHECK SPACE, as shown above. This procedure calls the
DBMS_SPACE package.

'||1_£s1 blocks]| |’

'||1_£s2 blocks]| |’

To execute the procedure, run the following command:
EXECUTE check space

The output is as follows:

FS1 Blocks =1 Bytes = 8192
FS2 Blocks = 0 Bytes = 0

FS3 Blocks =1 Bytes = 8192
FS4 Blocks = 3 Bytes = 24576
Full Blocks = 0 Bytes = 0
Total Blocks = 5 ||

Total Bytes = 40960
PL/SQL procedure successfully completed.

Oracle Database 11g: Advanced PL/SQL 5 - 31

Checking Space Usage of a LOB Table (continued)

Complete Code of the CHECK_SPACE Procedure

CREATE OR REPLACE PROCEDURE check space

IS
1 fs1 bytes NUMBER; 1 fs2 bytes NUMBER;
1 f£s3 bytes NUMBER; 1 fs4 bytes NUMBER;
1 fs1 blocks NUMBER; 1 fs2 blocks NUMBER;
1 fs3 blocks NUMBER; 1 fs4 blocks NUMBER;
1 full bytes NUMBER; 1 full blocks NUMBER;
1l unformatted bytes NUMBER;
1 unformatted blocks NUMBER;

BEGIN
DBMS_SPACE.SPACE_USAGE (

segment owner => 'OE',
segment name => 'CUSTOMER_PROFILES',
segment type => 'TABLE',
fsl bytes => 1 fsl bytes,
fsl blocks => 1 fsl1 blocks,
fs2 bytes => 1 fs2 bytes,
fs2 blocks => 1 fs2 blocks,
fs3 bytes => 1 fs3 bytes,
fs3 blocks => 1 fs3 blocks,
fs4 bytes => 1 fs4 bytes,
fs4 blocks => 1 fs4 blocks,
full bytes => 1 full bytes,
full blocks => 1 full blocks,

unformatted blocks => 1 unformatted blocks,
unformatted bytes => 1 unformatted bytes
)i
DBMS OUTPUT.ENABLE;
DBMS OUTPUT.PUT LINE(' FS1 Blocks

"|]1 _£s1 blocks| |

Bytes = '||1l fsl bytes);

DBMS OUTPUT.PUT LINE (' FS2 Blocks = '||1l fs2 blocks]||'
Bytes = '||1l_fs2 bytes);

DBMS_ OUTPUT.PUT LINE (' FS3 Blocks = '||1l _fs3 blocks]||'
Bytes = '||1l fs3 bytes);

DBMS_ OUTPUT.PUT LINE (' FS4 Blocks = '||1l_fs4 blocks]||'
Bytes = '||1l _fs4 bytes);

DBMS_ OUTPUT.PUT LINE ('Full Blocks = '||1l_full blocks]||'
Bytes = '||1 _full bytes);

DBMS_OUTPUT.PUT LINE('====================================
=========");

DBMS OUTPUT.PUT LINE('Total Blocks =
"| |to_char(l fsl blocks + 1 fs2 blocks +
1 fs3 blocks + 1 fs4 blocks + 1 full blocks) || ' ||
Total Bytes = '|| to char(l fsl bytes + 1 fs2 bytes
+ 1 fs3 bytes + 1 fs4 bytes + 1 full bytes));

END;

Oracle Database 11g: Advanced PL/SQL 5 - 32

Selecting CLOB Values by Using SQL

* Query:

SELECT id, full name , resume -- CLOB
FROM customer profiles
WHERE id IN (164, 150);

« Output in SQL*Plus:
ID FULL NAME RESUME

164 Charlotte Kazan Date of Birth: 8 February 1951
Resigned = 5 June 2000

150 Harry Dean Fonda Date of Birth: 1 June 1
956 Resigned = 30 September 2000

* Output in SQL Developer:

g o|E FuLL_emE |RESUME
1 164 Charlotte Kazan (CLOB) Resigned ...
2 1580 Harry Dean Fo... (CLOB) Date of Bi...

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Selecting cLOB Values by Using SQL

It is possible to see the data in a CLOB column by using a SELECT statement. It is not possible to see
the data in a BLOB or BFILE column by using a SELECT statement in SQL*Plus. You must use a
tool that can display the binary information for a BLOB, as well as the relevant software for a
BFILE—for example, you can use Oracle Forms.

Oracle Database 11g: Advanced PL/SQL 5 -33

Selecting CLOB Values by Using DBMS LOB

* DBMS LOB.SUBSTR (lob, amount, start pos)
* DBMS LOB.INSTR (lob, pattern)

SELECT DBMS LOB.SUBSTR (resume, 5, 18),
DBMS LOB.INSTR (resume,' = ')

FROM customer profiles

WHERE id IN (150, 164);

« SQL*Plus

DBMS LOB.SUBSTR (RESUME, 5,18) DBMS LOB.INSTR(RESUME, '="')

« SQL Developer

DEMS_LOB SUBSTRIEESUME S 187 | DEMS_LOB INSTRIRESUME '=") |
1 Febru 40
2 June 36

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Selecting cLoB Values by Using DBMS LOB
DBMS LOB.SUBSTR
Use DBMS_LOB. SUBSTR to display a part of a LOB. It is similar in functionality to the SUBSTR
SQL function.
DBMS LOB.INSTR

Use DBMS_LOB. INSTR to search for information within the LOB. This function returns the
numerical position of the information.

Oracle Database 11g: Advanced PL/SQL 5 - 34

Selecting CcLOB Values in PL/SQL

SET LINESIZE 50 SERVEROUTPUT ON FORMAT WORD WRAP

DECLARE
text VARCHAR2 (4001) ;
BEGIN
SELECT |resume INTO text
FROM customer profiles
WHERE id = 150;
DBMS OUTPUT.PUT LINE('text is: '|| text);
END;
/

anonymous block completed
text is: Date of Birth: 1 June 1956 Resigned = 30
September 2000

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Selecting cLOB Values in PL/SQL

The slide shows the code for accessing CLOB values that can be implicitly converted to VARCHAR2.
When selected, the RESUME column value is implicitly converted from a CLOB to a VARCHAR?2 to
be stored in the TEXT variable.

Oracle Database 11g: Advanced PL/SQL 5 -35

Removing LOBs

* Delete a row containing LOBS:

DELETE
FROM customer profiles
WHERE id = 164;

« Disassociate a L.LOB value from a row:

UPDATE customer profiles
SET resume = EMPTY CLOB()
WHERE id = 150;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Removing LOBs

A LOB instance can be deleted (destroyed) by using the appropriate SQL DML statements. The
DELETE SQL statement deletes a row and its associated internal LOB value. To preserve the row and
destroy only the reference to the LOB, you must update the row by replacing the LOB column value
with NULL or an empty string, or by using the EMPTY B/CLOB () function.

Note: Replacing a column value with NULL and using EMPTY B/CLOB are not the same. Using
NULL sets the value to null; using EMPTY B/CLOB ensures that nothing is in the column.

A LOB is destroyed when the row containing the LOB column is deleted, when the table is dropped or
truncated, or when all LOB data is updated.

You must explicitly remove the file associated with a BFILE by using the OS commands.
To erase part of an internal LOB, you can use DBMS LOB.ERASE.

Oracle Database 11g: Advanced PL/SQL 5 - 36

Quiz

The BFILE data type stores a locator to the physical file.
a. True
b. False

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: a

Oracle Database 11g: Advanced PL/SQL 5 - 37

Quiz

Use the BFILENAME function to:
a. Create a BFILE column.

b. Initialize a BFILE column.
c. Update a BFILE column.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: b, c

Oracle Database 11g: Advanced PL/SQL 5 - 38

Quiz

Which of the following statements are true?

a. You should initialize the LOB column to a non-NULL by
using the EMPTY BLOB ()and EMPTY CLOB () functions.

b. Populate the LOB contents by using the DBMS LOB
package routines.

c. ltis possible to see the data in a CL.OB column by using a
SELECT statement.

d. Itis not possible to see the data in a BLOB or BFILE
column by using a SELECT statement in SQL*Plus.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: a, b, c, d

Oracle Database 11g: Advanced PL/SQL 5 -39

Lesson Agenda

* Introduction to LOBs

 Managing BFILES by using the DBMS LOB package
 Manipulating L.OB data

« Using temporary LOBS

e Using SecureFile LOB

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 5 -40

Temporary LOBS

 Temporary LOBS:
— Provide an interface to support creation of 1.OBs that act like
local variables
— Can be BLOBS, CLOBS, or NCLOBS

— Are not associated with a specific table

— Are created by using the DBMS LOB.CREATETEMPORARY
procedure
— Use DBMS LOB routines

* The lifetime of a temporary 1.OB is a session.

« Temporary LOBs are useful for transforming data in
permanent internal LOBs.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Temporary LOBs

Temporary LOBs provide an interface to support the creation and deletion of LOBs that act like local
variables. Temporary LOBs can be BLOBs, CLOBs, or NCLOBs.

The following are the features of temporary LOBs:

 Data is stored in your temporary tablespace, not in tables.

» Temporary LOBs are faster than persistent LOBs, because they do not generate redo or rollback
information.

» Temporary LOBs lookup is localized to each user’s own session. Only the user who creates a
temporary LOB can access it, and all temporary LOBs are deleted at the end of the session in
which they were created.

* You can create a temporary LOB by using DBMS LOB.CREATETEMPORARY.

Temporary LOBs are useful when you want to perform a transformational operation on a LOB (for
example, changing an image type from GIF to JPEG). A temporary LOB is empty when created and
does not support the EMPTY B/CLOB functions.

Use the DBMS_LOB package to use and manipulate temporary LOBSs.

Oracle Database 11g: Advanced PL/SQL 5 - 41

Creating a Temporary LOB

The PL/SQL procedure to create and test a temporary LOB:

CREATE OR REPLACE PROCEDURE is templob open (
p_lob IN OUT BLOB, p retval OUT INTEGER) IS
BEGIN
-- create a temporary LOB
DBMS LOB.CREATETEMPORARY (p lob, TRUE) ;
-- see if the LOB is open: returns 1 if open
p _retval := DBMS LOB.ISOPEN (p lob);
DBMS OUTPUT.PUT LINE (
'The file returned a value...' || p _retval);
-- free the temporary LOB
DBMS LOB.FREETEMPORARY (p 1lob) ;
END;
/

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Creating a Temporary LOB

The example in the slide shows a user-defined PL/SQL procedure, is templob open, which

creates a temporary LOB. This procedure accepts a LOB locator as input, creates a temporary LOB,
opens it, and tests whether the LOB is open.

The is_templob open procedure uses the procedures and functions from the DBMS LOB
package as follows:

* The CREATETEMPORARY procedure is used to create the temporary LOB.

* The ISOPEN function is used to test whether a LOB is open: This function returns the value 1 if
the LOB is open.

* The FREETEMPORARY procedure is used to free the temporary LOB. Memory increases
incrementally as the number of temporary LOBs grows, and you can reuse the temporary LOB
space in your session by explicitly freeing temporary LOBs.

Oracle Database 11g: Advanced PL/SQL 5 -42

Lesson Agenda

* Introduction to LOBs

 Managing BFILES by using the DBMS LOB package
« Migrating LONG data types to LOBSs

 Manipulating L.OB data

* Using temporary LOBS

 Using SecureFile LOB

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 5 -43

SecureFile LOBs

Oracle Database 11g offers a reengineered large object (LOB)
data type that:

* Improves performance
- Eases manageability
- Simplifies application development

- Offers advanced, next-generation functionality such as
intelligent compression and transparent encryption

vy

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

SecureFile L.OBs

With SecureFile LOBs, the LOB data type is completely reengineered with dramatically improved
performance, manageability, and ease of application development. This implementation, available
with Oracle Database 11g, also offers advanced, next-generation functionality such as intelligent
compression and transparent encryption. This feature significantly strengthens the native content
management capabilities of Oracle Database.

SecureFile LOBs were introduced to supplement the implementation of original BasicFile LOBs that
are identified by the BASICFILE SQL parameter.

Oracle Database 11g: Advanced PL/SQL 5 -44

Storage of SecureFile LOBs

Oracle Database 11g implements a new storage paradigm for
LOB storage.
- Ifthe SECUREFILE storage keyword appears in the
CREATE TABLE statement, the new storage is used.

« Ifthe BASICFILE storage keyword appears in the CREATE
TABLE statement, the old storage paradigm is used.

* By default, the storage is BASICFILE, unless you modify
the setting for the DB SECUREFILE parameter in the
init.ora file.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Storage of SecureFile LOBs

Starting with Oracle Database 11g, you have the option of using the new SecureFile storage
paradigm for LOBs. You can specify the use of the new paradigm by using the SECUREFILE
keyword in the CREATE TABLE statement. If that keyword is left out, the old storage paradigm for
basic file LOBs is used. This is the default behavior.

You can modify the init . ora file and change the default behavior for the storage of LOBs by
setting the DB SECUREFILE initialization parameter. The following values are allowed:
e ALWAYS: Attempts to create all LOB files as SECUREFILES but creates any LOBs not in ASSM
tablespaces as BASICFILE LOBs
e FORCE: All LOBs created in the system are created as SECUREFILE LOBs.
e PERMITTED: The default; allows SECUREFILES to be created when specified with the
SECUREFILE keyword in the CREATE TABLE statement
e NEVER: Creates LOBs that are specified as SECUREFILE LOBs as BASICFILE LOBs
e IGNORE: Ignores the SECUREFILE keyword and all SECUREFILE options

Oracle Database 11g: Advanced PL/SQL 5 -45

Creating a SecureFile LOB

» Create a tablespace for the 1.OB data:

-- have your dba do this:
CREATE TABLESPACE sf tbsl

DATAFILE 'sf tbsl.dbf' SIZE 1500M REUSE <:>
AUTOEXTEND ON NEXT 200M

MAXSIZE 3000M

SEGMENT SPACE MANAGEMENT AUTO;

 Create a table to hold the L.LOB data:

CONNECT oe
CREATE TABLE customer profiles sf
(id NUMBER,
first name VARCHAR2 (40),
last name VARCHAR2 (80), <:)
profile info BLOB)
LOB (profile info) [STORE AS SECUREFILE |
(TABLESPACE sf tbsl);

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Creating a SecureFile LOB

To create a column to hold a LOB that is a SecureFile, you:

» Create a tablespace to hold the data
* Define a table that contains a LOB column data type that is used to store the data in the

SecureFile format
In the example shown in the slide:

1. The sf tbs1 tablespace is defined. This tablespace stores the LOB data in the SecureFile
format. When you define a column to hold SecureFile data, you must have Automatic Segment
Space Management (ASSM) enabled for the tablespace in order to support SecureFiles.

2. The CUSTOMER PROFILES_ SF table is created. The PROFILE INFO column holds the
LOB data in the SecureFile format, because the storage clause identifies the format.

Oracle Database 11g: Advanced PL/SQL 5 - 46

Comparing Performance

Compare the performance on loading and reading I.OB columns
in the SecureFile and BasicFile formats:

Performance Loading Data | Reading Data
Comparison

SecureFile format §00:00:00.96 00:00:01.09
BasicFile format 00:00:01.68 00:00:01.15

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Performance
In the examples shown in this lesson, the performance on loading and reading data in the LOB
column of the SecureFile format LOB is faster than that of the BasicFile format LOB.

Oracle Database 11g: Advanced PL/SQL 5 -47

Enabling Deduplication and Compression

To enable deduplication and compression, use the ALTER
TABLE statement with the DEDUPLICATE and COMPRESS
options.

* By enabling deduplication with SecureFiles, duplicate L.OB
data is automatically detected and space is conserved by
storing only one copy.

* Enabling compression turns on LOB compression.

ALTER TABLE tblname
MODIFY LOB lobcolname

y.
& / —
=
%.\
Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Enabling Deduplication and Compression with the ALTER TABLE Statement

(DEDUPLICATE option
COMPRESS option)

You can enable deduplication and compression of SecureFiles with the ALTER TABLE statement
and the DEDUPLICATE and COMPRESS options.

The DEDUPLICATE option enables you to specify that LOB data, which is identical in two or more
rows in a LOB column, should share the same data blocks. The opposite of this option is
KEEP_DUPLICATES. Using a secure hash index to detect duplication, the database combines LOBs
with identical content into a single copy, thereby reducing storage and simplifying storage
management. You can also use DBMS_LOB.SETOPTIONS to enable or disable deduplication on
individual LOBs.

The options for the COMPRESS clause are:
e COMPRESS HIGH: Provides the best compression but incurs the most work
e COMPRESS MEDIUM: Is the default value
e NOCOMPRESS: Disables compression

You can also use DBMS_LOB.SETOPTIONS to enable or disable compression on individual LOBs.

Oracle Database 11g: Advanced PL/SQL 5 -48

Enabling Deduplication and
Compression: Example

1. Check the space being used by the
CUSTOMER PROFILES SF table.

2. Enable deduplication and compression on the
PROFILE INFO LOB column with the ALTER TABLE

statement.

3. Recheck the space being used by the
CUSTOMER PROFILES SF table.

4. Reclaim the space.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Deduplication and Compression: Example

To demonstrate how efficient deduplication and compression are on SecureFiles, the example
follows the set of steps outlined in the slide.

In the first step, you see the space being used by the CUSTOMER PROFILES SF table.

In the second step, you enable deduplication and compression for the PROFILE INFO LOB column
in the CUSTOMER _PROFILES_SF table.

In the third step, you examine the space being used after deduplication and compression are enabled.

In the fourth step, you reclaim the space and examine the results.

Oracle Database 11g: Advanced PL/SQL 5 -49

Step 1: Checking Space Usage

CREATE OR REPLACE PROCEDURE check sf space
IS

1 fsl bytes NUMBER;

1 fs2 bytes NUMBER;

BEGIN

DBMS SPACE.SPACE USAGE (
segment owner => 'OE',
segment name => 'CUSTOMER PROFILES SF',
segment type => 'TABLE',
fsl bytes => 1 fsl bytes,
fsl blocks => 1 fsl blocks,
fs2 bytes => 1 fs2 bytes,
fs2 blocks => 1 fs2 blocks,

) ;

DBMS OUTPUT.ENABLE;

DBMS OUTPUT.PUT LINE(' FS1 Blocks
Bytes = '| |1l _£fsl bytes);

DBMS OUTPUT.PUT LINE(' FS2 Blocks
Bytes = '| |1l _fs2 bytes); ..
DBMS OUTPUT.PUT LINE('=======================================');

DBMS OUTPUT.PUT LINE('Total Blocks =
'||to char(l fsl blocks + 1 fs2 blocks));

'||1_£s1 blocks]| |"

'||1_£s2 blocks]| |*

END;
Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Checking Space Usage Before Deduplication and Compression
Here, you create a procedure to check the SECUREFILE LOB space usage.

To execute the procedure, run the following command:
EXECUTE check sf space

Note: The full code for the CHECK SF SPACE procedure is shown on the next page.

Oracle Database 11g: Advanced PL/SQL 5 -50

Checking Space Usage Before Deduplication and Compression (continued)

CREATE OR REPLACE PROCEDURE check sf space

IS
1l fsl bytes NUMBER; 1l fs2 bytes NUMBER;
1 f£s3 bytes NUMBER; 1 fs4 bytes NUMBER;
1 £s1 blocks NUMBER; 1 fs2 blocks NUMBER;
1 fs3 blocks NUMBER; 1 fs4 blocks NUMBER;
1 full bytes NUMBER; 1 full blocks NUMBER;
1 unformatted bytes NUMBER;
1l unformatted blocks NUMBER;

BEGIN
DBMS SPACE.SPACE USAGE (

segment owner => 'OE',
segment name => 'CUSTOMER_PROFILES SF',
segment type => 'TABLE',
fsl bytes => 1 fsl bytes,
fsl blocks => 1 fsl blocks,
fs2 bytes => 1 fs2 bytes,
fs2 blocks => 1 fs2 blocks,
fs3 bytes => 1 fs3 bytes,
fs3 blocks => 1 fs3 blocks,
fs4 bytes => 1 fs4 bytes,
fs4 blocks => 1 fs4 blocks,
full bytes => 1 full bytes,
full blocks => 1 full blocks,

unformatted blocks => 1 unformatted blocks,
unformatted bytes => 1 unformatted bytes
)i

DBMS OUTPUT.ENABLE;

DBMS OUTPUT.PUT LINE (' FS1 Blocks "|]1_£fs1 blocks]| |

Bytes = '||1l fsl bytes);

DBMS_ OUTPUT.PUT LINE (' FS2 Blocks = '||1l_fs2 blocks]||'
Bytes = '||1l_fs2 bytes);

DBMS_ OUTPUT.PUT LINE (' FS3 Blocks = '||1l fs3 blocks]||'
Bytes = '||1l fs3 bytes);

DBMS_ OUTPUT.PUT LINE (' FS4 Blocks = '||1l_fs4 blocks]||'
Bytes = '||1l fs4 bytes);

DBMS_ OUTPUT.PUT LINE ('Full Blocks = '||1l_full blocks]||'
Bytes = '||1_full bytes);

DBMS OUTPUT.PUT LINE('===============================
==============');
DBMS OUTPUT.PUT LINE('Total Blocks =
"| |to _char(l fsl blocks + 1 fs2 blocks +
1 fs3 blocks + 1 fs4 blocks + 1 full blocks) || ' ||
Total Bytes = '|| to char(l fsl bytes + 1 fs2 bytes
+ 1 fs3 bytes + 1 fs4 bytes + 1 full bytes));
END check sf space;

Oracle Database 11g: Advanced PL/SQL 5 - 51

Step 1: Checking Space Usage

Execution results:

EXECUTE check sf space

FS1 Blocks = 0 Bytes = 0

FS2 Blocks =1 Bytes = 8192

FS3 Blocks = 0 Bytes = 0

FS4 Blocks = 4 Bytes = 32768

Full Blocks = 0 Bytes = 0

Total Blocks = 5 ||

Total Bytes = 40960

PL/SQL procedure successfully completed.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Checking Space Usage Before Deduplication and Compression (continued)

The slide shows the space usage before deduplication and compression is enabled. The amount
shown in the slide is used as a baseline for comparison over the next few steps.

Note: You can also compare the space usage with that of the BASICFILE LOB.

Oracle Database 11g: Advanced PL/SQL 5 - 52

Step 2: Enabling Deduplication and Compression

ALTER TABLE customer profiles sf
MODIFY LOB (profile info)
(DEDUPLICATE LOB

COMPRESS HIGH) ;

Table altered.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Enabling Deduplication and Compression: Example

To enable deduplication and compression, run the ALTER TABLE statement with the appropriate
options.

In this example, deduplication is turned on and the compression rate is set to HIGH.

Oracle Database 11g: Advanced PL/SQL 5 -53

Step 3: Rechecking LOB Space Usage

EXECUTE check sf space

FS1 Blocks = 0 Bytes = 0

FS2 Blocks = 0 Bytes = 0

FS3 Blocks = 0 Bytes = 0

FS4 Blocks = 4 Bytes = 32768

Full Blocks =1 Bytes = 8192

Total Blocks = 5 ||

Total Bytes = 40960

PL/SQL procedure successfully completed.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Rechecking L.OB Space Usage

The amount of space used should be about 65% less than before deduplication and compression were
enabled.

If the total space used appears to be the same as before deduplication and compression were enabled,
reclaim the free space before it is usable again.

Oracle Database 11g: Advanced PL/SQL 5 - 54

Step 4: Reclaiming the Free Space

ALTER TABLE customer_profiles_sf ENABLE ROW MOVEMENT;
Table altered.

Table altered.

ALTER TABLE customer profiles sf SHRINK SPACE;

ALTER TABLE customer profiles sf SHRINK SPACE COMPACT@
Table altered. @

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Reclaiming the Free Space

1. The first statement enables row movement so that the data can be shifted to save space.
Compacting the segment requires row movement.

2. The second statement (ALTER TABLE resumes SHRINK SPACE COMPACT) redistributes the
rows inside the blocks resulting in more free blocks under the High Water Mark (HWM)—but
the HWM itself is not disturbed.

3. The third statement (ALTER TABLE resumes SHRINK SPACE) returns unused blocks to the
database and resets the HWM, moving it to a lower position. Lowering the HWM should result
in better full-table scan reads.

Rechecking LOB Space Usage
EXECUTE check sf space

FS1 Blocks = 0 Bytes = 0
FS2 Blocks =1 Bytes = 8192
FS3 Blocks = 0 Bytes = 0
FS4 Blocks = O Bytes = 0
Full Blocks = 0 Bytes = 0
Total Blocks = 1 ||

Total Bytes = 8192

Oracle Database 11g: Advanced PL/SQL 5 - 55

Using Encryption

The encryption option enables you to turn the LOB encryption
on or off, and, optionally, to select an encryption algorithm.

* Encryption is performed at the block level.

* You can specify the encryption algorithm: 3’456.769"
— 3DES168 o 0!’
— AES128 o /:; o
— AES192 (default) wﬁ’*
— AES256 "

* The column encryption key is derived by using
Transparent Data Encryption.

* All LOBs in the LOB column are encrypted.
* DECRYPT keeps the LOBs in cleartext.

* LOBSs can be encrypted on a per-column or per-partition
basis.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Encryption
You can create a table or alter a table with encryption enabled or disabled on a LOB column. The
current Transparent Data Encryption (TDE) syntax is used for extending encryption to LOB data

types.

Oracle Database 11g: Advanced PL/SQL 5 - 56

Using Encryption

1. Create a directory to store the Transparent Data Encryption
(TDE) wallet.

mkdir /home/oracle/etc/oracle/wallets

2. Editthe <ORACLE HOME>/network/admin/sglnet.ora file
to indicate the location of the TDE wallet.

ENCRYPTION_WALLET_LOCATION=(SOURCE:(METHOD:FILE)
(METHOD DATA=
(DIRECTORY=/home/oracle/etc/oracle/wallets)))

3. Stop and start the listener for the change to take effect.
LSNRCTL RELOAD

4. To open the wallet, log in to SQL*Plus as SYSDRBRA and
execute the following command:

ALTER system SET KEY IDENTIFIED BY "welcomel";

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Encryption (continued)

TDE enables you to encrypt sensitive data in database columns, because the data is stored in the
operating system files.

TDE is a key-based access control system that enforces authorization by encrypting data with a key
that is kept secret. There can be only one key for each database table that contains encrypted
columns, regardless of the number of encrypted columns in a given table. Each table’s column
encryption key is, in turn, encrypted with the database server’s master key. No keys are stored in the
database. Instead, they are stored in an Oracle wallet, which is part of the external security module.

To enable TDE, perform the following:

1. Create a directory to store the TDE wallet.

2. Modify the sglnet . ora file to identify the location of the TDE wallet, as shown in the slide.
Make sure that the wallet location is set to a location outside the Oracle installation to avoid
ending up on a backup tape together with encrypted data.

Stop and start the listener to have the change take effect: LSNRCTL RELOAD
4. Open the wallet. Log in to SQL*Plus as the SYS user and execute the following command:
ALTER system SET KEY IDENTIFIED BY “welcome”;

W

Oracle Database 11g: Advanced PL/SQL 5 - 57

Using Encryption: Example

- Enable encryption:

ALTER TABLE customer profiles sf
MODIFY (profile info ENCRYPT USING 'AES192');

Table altered.
« Verify that the LOB is encrypted:

SELECT *
FROM user encrypted columns;

TABLE NAME COLUMN NAME ENCRYPTION ALG SAL

CUSTOMER PROFILES PROFILE INFO AES 192 bits key YES

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Encryption: Example
In the example shown in the slide, the CUSTOMER PROFILES SF table is modified so that the
PROFILE INFO column uses encryption.
You can query the USER_ENCRYPTED _COLUMNS dictionary view to see the status of the encrypted
columns.

Oracle Database 11g: Advanced PL/SQL 5 - 58

Migrating from BasicFile to SecureFile Format

Check the LOB segment subtype name for the BasicFile format:

col segment name format a30
col segment type format al3

SELECT segment name, segment type, segment subtype
FROM dba segments

WHERE tablespace name = 'LOB TBS1'
AND segment type = 'LOBSEGMENT';
SEGMENT NAME SEGMENT TYPE SEGME
SYS LOB0000080068C00004S$$ LOBSEGMENT ASSM

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

LOB Segment Type for BasicFile Format

By querying the DBA SEGMENTS view, you can see that the LOB segment subtype name for
BasicFile LOB storage is ASSM.

Oracle Database 11g: Advanced PL/SQL 5 -59

Migrating from BasicFile to SecureFile Format

« The migration from BasicFile to SecureFiles L.OB storage
format is performed online.

* This means that the CUSTOMER PROFILES table
continues to be accessible during the migration.

« This type of operation is called online redefinition.

CREATE TABLE customer profiles interim
(id NUMBER,

full name VARCHAR2 (45),

resume CLOB,

picture BLOB)

LOB (picture) STORE AS SECUREFILE
(TABLESPACE lob tbsl);

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Creating an Interim Table
Online redefinition requires an interim table for data storage.

In this step, the interim table is defined with the SecureFiles LOB storage format, and the LOB is
stored in the 1ob_tbs1 tablespace. After the migration is completed, the PICTURE LOB is stored
in the 1ob tbs1 tablespace.

Oracle Database 11g: Advanced PL/SQL 5 - 60

Migrating from BasicFile to SecureFile Format

Call the DBMS REDEFINITION package to perform the online
redefinition operation:

DECLARE
error count PLS INTEGER := 0;
BEGIN
DBMS REDEFINITION.START REDEF TABLE
('OE', 'customer profiles', 'customer profiles interim',
'id id, full name full name,
resume resume, picture picture',
OPTIONS FLAG => DBMS REDEFINITION.CONS USE ROWID) ;
DBMS REDEFINITION.COPY TABLE DEPENDENTS
('OE', 'customer profiles', 'customer profiles interim',
1l, true,true,true,false, error count);
DBMS_OUTPUT.PUT LINE('Errors := ' || TO CHAR(error count));
DBMS REDEFINITION.FINISH REDEF TABLE
('OE', 'customer profiles', 'customer profiles interim');
END;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using DBMS REDEFINITION to Perform Redefinition

After running the code shown in the slide and completing the redefinition operation, you can drop the

interim table:

DROP TABLE customer profiles interim;

Now, check the segment type of the migrated LOB. Note that the segment subtype for SecureFile
LOB storage i1s SECUREFILE; for BasicFile format, it is ASSM.

SELECT segment name, segment type, segment subtype
FROM dba segments

WHERE tablespace name = 'LOB_TBS1'

AND segment type = 'LOBSEGMENT'

/

SEGMENT_NAME SEGMENT_TYPE SEGMENT_SU
SYS LOB0000080071C000045$5S LOBSEGMENT SECUREFILE

Oracle Database 11g: Advanced PL/SQL 5 - 61

Quiz

Which of the following statement(s) is true with reference to
temporary LOBS?
a. Data is stored in your temporary tablespace, not in tables.
b. Temporary LOBs are faster than persistent L.OBs, because
they do not generate redo or rollback information.
c. Only the user who creates a temporary I.OB can access it,
and all temporary LOBs are deleted at the end of the
session in which they were created.

d. You can create a temporary LOB by using
DBMS LOB.CREATETEMPORARY.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: a, b, c, d

Oracle Database 11g: Advanced PL/SQL 5 - 62

Quiz

By default, the storage of a BFILE is SECUREFILE, unless you
modify the setting for the DB SECUREFILE parameter in the
init.ora file.

a. True
b. False

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: b

Oracle Database 11g: Advanced PL/SQL 5 -63

Quiz

To enable deduplication, use the ALTER TABLE statement with
the DUPLICATE options.

a. True
b. False

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: b

Oracle Database 11g: Advanced PL/SQL 5 - 64

Summary

In this lesson, you should have learned how to:
» ldentify four built-in types for large objects: BLOB, CLOB,
NCLOB, and BFILE
* Describe how 1L.OBs replace LONG and LONG RAW
« Describe two storage options for LOBSs:
— Oracle server (internal 1L.OBS)
— External host files (external LOBS)
* Use the DBMS LOB PL/SQL package to provide routines
for LOB management
* Enable SecureFile 1.0B deduplication, compression, and
encryption
* Migrate BasicFile L.OBs to the SecureFile L.OB format

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Summary

There are four LOB data types:
* A BLOB is a binary large object.
* A CLOB is a character large object.
* An NCLOB stores multiple-byte national character set data.
A BFILE is a large object stored in a binary file outside the database.

LOBs can be stored internally (in the database) or externally (in an OS file). You can manage LOBs
by using the DBMS LOB package and its procedure.

Temporary LOBs provide an interface to support the creation and deletion of LOBs that act like local
variables.

You learned that the SecureFile format offers features such as deduplication, compression, and
encryption. You learned how to migrate the older version BasicFile format to the SecureFile format,
and also learned that the performance of SecureFile format LLOBs is faster than the BasicFile format
LOBs.

Oracle Database 11g: Advanced PL/SQL 5 - 65

Practice 5: Overview

This practice covers the following topics:
« Creating object types of the CL.OB and BLOB data types
« Creating a table with the 1.OB data types as columns

* Using the DBMS LOB package to populate and interact with
the LOB data

» Setting up the environment for 1.OBs
* Migrating BasicFile LOBs to SecureFile LOBs
- Enabling deduplication and compression

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Practice 5: Overview

In this practice, you create a table with both BLOB and CLOB columns. Then, you use the
DBMS_LOB package to populate the table and manipulate the data.

Use the OE schema for this practice.

For detailed instructions about performing this practice, see Appendix A, “Practice Solutions.”

Oracle Database 11g: Advanced PL/SQL 5 - 66

Using Advanced Interface Methods

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Execute external C programs from PL/SQL
« Execute Java programs from PL/SQL

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

In this lesson, you learn how to implement an external C routine from PL/SQL code and how to
incorporate Java code into your PL/SQL programs.

Oracle Database 11g: Advanced PL/SQL 6 -2

Calling External Procedures from PL/SQL

With external procedures, you can make “callouts”
and, optionally, “callbacks” through PL/SQL.

/ Java class

DECLARE . \
XX > et method
BEGIN o
[X X J
EXCEPTION it
oo nC C routine
END; .

PL/SQL External
subprogram procedure

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

External Procedures: Overview

An external procedure (also called an external routine) is a routine stored in a dynamic link library
(DLL), shared object (. so file in LINUX / UNIX), or libunit in the case of a Java class method that
can perform special purpose processing. You publish the routine with the base language, and then
call it to perform special-purpose processing. You call the external routine from within PL/SQL or
SQL. With C, you publish the routine through a library schema object, which is called from PL/SQL,
that contains the compiled library file name that is stored on the operating system. With Java,
publishing the routine is accomplished through creating a class libunit.

A callout is a call to the external procedure from your PL/SQL code.

A callback occurs when the external procedure calls back to the database to perform SQL operations.
If the external procedure is to execute SQL or PL/SQL, it must “call back™ to the database server
process to get this work done.

An external procedure enables you to:
» Move computation-bound programs from the client to the server where they execute faster
(because they avoid the round trips entailed in across-network communication)
* Interface the database server with external systems and data sources
» Extend the functionality of the database itself

Oracle Database 11g: Advanced PL/SQL 6 -3

Benefits of External Procedures

« External procedures integrate the strength and capability
of different languages to give transparent access to these
routines within the database.

« Extensibility: External procedures provide functionality in
the database that is specific to a particular application,
company, or technological area.

« Reusability: External procedures can be shared by all
users on a database, and they can be moved to other
databases or computers, thereby providing standard
functionality with limited cost in development,
maintenance, and deployment.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Benefits of External Procedures

Using an external procedure, you can invoke an external routine through PL/SQL. By using external
procedures, you can integrate the powerful programming features of 3GLs with the ease of data
access of SQL and PL/SQL commands.

You can extend the database and provide backward compatibility. For example, you can invoke
different index or sorting mechanisms as an external procedure to implement data cartridges.

Example

A company has very complicated statistics programs written in C. The customer wants to access the
data stored in an Oracle database and pass the data into the C programs. After execution of the C
programs, depending on the result of the evaluations, data is inserted into the appropriate Oracle
database tables.

Oracle Database 11g: Advanced PL/SQL 6 -4

External C Procedure Components
[
I Listener
DECLARE | process
BEGIN - I
=
EXCEPTION %
% I extproc
END; |/ I process
PL/SQL Alias :
subprogram library [
=
2
/ /
.z A
User ’ A
process External Shared library
procedure

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

External C Procedure Components

» External procedure: A unit of code written in C

* Shared library: An operating system file that stores the external procedure

 Alias library: A schema object that represents the operating system shared library

« PL/SQL subprograms: Packages, procedures, or functions that define the program unit
specification and mapping to the PL/SQL library

* extproc process: A session-specific process that executes external procedures

» Listener process: A process that starts the extproc process and assigns it to the process
executing the PL/SQL subprogram

Oracle Database 11g: Advanced PL/SQL 6 -5

How PL/SQL Calls a C External Procedure

DECLARE @

o000
BEGIN «
= o EXX)

EXCEPTION %

extproc
process

(XX}
END;

PL/SQL Alias
subprogram library

@

BEGIN @ >
myproc = =
i _ |2
User ||I/ ’%‘u/)
@ pliefs s External T -
procedure Shared library

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

How PL/SQL Calls a C External Procedure

1. The user process invokes a PL/SQL program.

. The server process executes a PL/SQL subprogram

. PL/SQL subprogram looks up the alias library.

. Oracle Database starts the external procedure agent, extproc.

. The extproc process loads the shared library.

. The extproc process links the server to the external file and executes the external procedure.
. The data and status are returned to the server.

N N DB W DN

Oracle Database 11g: Advanced PL/SQL 6 -6

The extproc Process

 The extproc process services the execution of external
procedures for the duration of the session until the user
logs off.

* Each session uses a different extproc process to
execute external procedures.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

The extproc Process

The extproc process performs the following actions:
* Converts PL/SQL calls to C calls:
- Loads the dynamic library
* Executes the external procedures:
- Raises exceptions if necessary
- Converts C back to PL/SQL
- Sends arguments or exceptions back to the server process
Note: Prior to Oracle Database 11g, Oracle Listener spawned the multithreaded extproc agent,
and you defined environment variables for extproc in the file 1istener. ora. Starting from

Oracle Database 11g, by default, Oracle Database spawns extproc directly, eliminating the risk
that Oracle Listener might spawn extproc unexpectedly.

Oracle Database 11g: Advanced PL/SQL 6 -7

Development Steps for
External C Procedures

1. Create and compile the external procedure in 3GL.

2. Link the external procedure with the shared library at the
operating system level.

3. Create an alias library schema object to map to the
operating system’s shared library.

4. Grant execute privileges on the library.

5. Publish the external C procedure by creating the PL/SQL
subprogram unit specification, which references the alias
library.

6. Execute the PL/SQL subprogram that invokes the external
procedure.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Development Steps for External C Procedures

Steps 1 and 2 vary according to the operating system. Consult your operating system or the compiler
documentation. After these steps are completed, you create an alias library schema object that
identifies the operating system’s shared library within the server. Execute privileges on the library
are required to execute the C procedure. Within your PL/SQL code, you map the C arguments to the
PL/SQL parameters, and execute the PL/SQL subprogram that invokes the external routine.

Oracle Database 11g: Advanced PL/SQL 6 -8

Development Steps for
External C Procedures

1., 2. Varies for each operating system; consult
documentation.

3. Use the CREATE LIBRARY statement to create an alias
library object.
CREATE OR REPLACE LIBRARY library name IS|AS
'file path';

4. Grant the EXECUTE privilege on the alias library.
GRANT EXECUTE ON library name TO user|ROLE|PUBLIC;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Creating the Alias Library

An alias library is a database object that is used to map to an external shared library. An external
procedure that you want to use must be stored in a DLL or a shared object library (SO) operating
system file. The DBA controls access to the DLL or SO files by using the CREATE LIBRARY
statement to create a schema object called an alias library that represents the external file. The DBA
must give you EXECUTE privileges on the library object so that you can publish the external
procedure, and then call it from a PL/SQL program.

Steps
1., 2. Steps 1 and 2 vary for each operating system. Consult your operating system or the compiler
documentation.
3. Create an alias library object by using the CREATE LIBRARY command:
CREATE OR REPLACE LIBRARY c utility
AS SORACLE _HOME/bin/calc_tax.so';
/

The example shows the creation of a database object called c_utility, which references the
location of the file and the name of the operating system file, calc_tax. so.

Oracle Database 11g: Advanced PL/SQL 6 -9

Creating the Alias Library (continued)

4. Grant EXECUTE privilege on the library object:
GRANT EXECUTE ON c utility TO OE;

5. Publish the external C routine.
6. Call the external C routine from PL/SQL.

Dictionary Information

The alias library definitions are stored in the USER_LIBRARIES and ALL_LIBRARIES data
dictionary views.

Oracle Database 11g: Advanced PL/SQL 6 -10

Development Steps for
External C Procedures

Publish the external procedure in PL/SQL through call
specifications:
* The body of the subprogram contains the external routine
registration.
« The external procedure runs on the same machine.

* Access is controlled through the alias library.

External routine

%/" < within the
N ‘%l procedure
j

LGN

o

Library

St

-

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Method to Access a Shared Library Through PL/SQL

You can access a shared library by specifying the alias library in a PL/SQL subprogram. The
PL/SQL subprogram then calls the alias library.

» The body of the subprogram contains the external procedure registration.

» The external procedure runs on the same machine.

» Access is controlled through the alias library.
You can publish the external procedure in PL/SQL by:

« Identifying the characteristics of the C procedure to the PL/SQL program

» Accessing the library through PL/SQL
The package specification does not require changes. You do not need definitions for the external
procedure.

Oracle Database 11g: Advanced PL/SQL 6 - 11

The Call Specification

Call specifications enable:
« Dispatching the appropriate C or Java target procedure
« Data type conversions
* Parameter mode mappings
* Automatic memory allocation and cleanup

« Purity constraints to be specified, where necessary, for
packaged functions that are called from SQL

« Calling Java methods or C procedures from database
triggers

* Location flexibility

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

The Call Specification

The current way to publish external procedures is through call specifications. Call specifications
enable you to call external routines from other languages. Although the specification is designed for
intercommunication between SQL, PL/SQL, C, and Java, it is accessible from any base language that
can call these languages.

To use an existing program as an external procedure, load, publish, and then call it.

Call specifications can be specified in any of the following locations:
 Stand-alone PL/SQL procedures and functions
» PL/SQL package specifications
* PL/SQL package bodies
» Object type specifications
» Object type bodies

Note: For functions that have the RESTRICT REFERENCES pragma, use the TRUST option. The

SQL engine cannot analyze those functions to determine whether they are free from side effects. The
TRUST option makes it easier to call the Java and C procedures.

Oracle Database 11g: Advanced PL/SQL 6 -12

The Call Specification

« ldentify the external body within a PL/SQL program to
publish the external C procedure.

CREATE OR REPLACE FUNCTION function_name
(parameter list)
RETURN datatype
regularbody | externalbody
END;

* The external body contains the external C procedure
information.

IS|AS LANGUAGE C

LIBRARY libname

[NAME C_ function name]

[CALLING STANDARD C | PASCAL]
[WITH CONTEXT]

[PARAMETERS (param 1, [param n]);

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Publishing an External C Routine
You create the PL/SQL procedure or function and use the IS |AS LANGUAGE C to publish the
external C procedure. The external body contains the external routine information.

Syntax Definitions

where: LANGUAGE Is the language in which the external
routine was written (defaults to C)
LIBRARY libname Is the name of the library database object
NAME Represents the name of the C function; if

"C_function name" omitted, the external procedure name must
match the name of the PL/SQL
subprogram

CALLING STANDARD Specifies the Windows NT calling
standard (C or Pascal) under which the
external routine was compiled (defaults

to C)
WITH CONTEXT Specifies that a context pointer is passed
to the external routine for callbacks
parameters Identifies arguments passed to the external
routine

Oracle Database 11g: Advanced PL/SQL 6 -13

The Call Specification

* The parameter list:

parameter list element
[, parameter list element]

* The parameter list element:

{ formal parameter name [indicator]
| RETURN INDICATOR

| CONTEXT }

[BY REFERENCE]

[external datatypel

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

The PARAMETER Clause

The foreign parameter list can be used to specify the position and the types of arguments, as well as
to indicate whether they should be passed by value or by reference.

Syntax Definitions

where: formal_ parameter_ [sthe name of the PL/SQL parameter that
name [INDICATOR] is being passed to the external routine; the
INDICATOR keyword is used to map a C
parameter whose value indicates whether
the PL/SQL parameter is null
RETURN INDICATOR Corresponds to the C parameter that
returns a null indicator for the function

CONTEXT Specifies that a context pointer will be
passed to the external routine
BY REFERENCE In C, you can pass IN scalar parameters

by value (the value is passed) or by
reference (a pointer to the value is
passed). Use BY REFERENCE to pass the
parameter by reference.
External_ datatype Is the external data type that maps to a C
data type
Note: The PARAMETER clause is optional if the mapping of the parameters is done on a positional
basis, and indicators, reference, and context are not needed.

Oracle Database 11g: Advanced PL/SQL 6 - 14

Publishing an External C Routine

Example
« Publish a C function called calc tax from a PL/SQL
function.

CREATE FUNCTION tax amt (
—® x BINARY INTEGER)
RETURN BINARY INTEGER
AS LANGUAGE C
LIBRARY sys.c utility
NAME "calc tax";

/

| The C prototype:

int calc tax (n);

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Example

You have an external C function called calc tax that takes in one argument, the total sales
amount. The function returns the tax amount calculated at 8%. The prototype for your calc tax
function is as follows:

int calc tax (n);
To publish the calc_ tax function in a stored PL/SQL function, use the AS LANGUAGE C clause
within the function definition. The NAME identifies the name of the C function. Double quotation
marks are used to preserve the case of the function defined in the C program. The LIBRARY
identifies the library object that locates the C file. The PARAMETERS clause is not needed in this
example, because the mapping of the parameters is done on a positional basis.

Oracle Database 11g: Advanced PL/SQL 6 -15

Executing the External Procedure

1. Create and compile the external procedure in 3GL.

2. Link the external procedure with the shared library at the
operating system level.

3. Create an alias library schema object to map to the
operating system’s shared library.

4. Grant execute privileges on the library.

5. Publish the external C procedure by creating the PL/SQL
subprogram unit specification, which references the alias
library.

6. |[Execute the PL/SQL subprogram that invokes the external
procedure.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Executing the External Procedure: Example

Here is a simple example of invoking the external routine:
BEGIN
DBMS OUTPUT.PUT LINE (tax amt (100));
END;

You can call the function in a cursor FOR loop or in any location where a PL/SQL function call is
allowed:
DECLARE
CURSOR cur orders IS
SELECT order_ id, order total
FROM orders;
v_tax NUMBER(8,2);

BEGIN
FOR order record IN cur orders
LOOP
v_tax := tax amt(order record.order total);
DBMS OUTPUT.PUT LINE('Total tax: ' || v_tax);
END LOOP;
END;

Oracle Database 11g: Advanced PL/SQL 6 -16

Java: Overview

The Oracle database can store Java classes and Java source,

which:
* Are stored in the database as procedures, functions, or
triggers

 Run inside the database
* Manipulate data

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Java: Overview

The Oracle database can store Java classes (.class files) and Java source code (.java files), as
procedures, functions, or triggers. These classes can manipulate data but cannot display graphical
user interface (GUI) elements such as Abstract Window Toolkit (AWT) or Swing components.
Running Java inside the database helps these Java classes to be called many times and manipulate
large amounts of data without the processing and network overhead that comes with running on the
client machine.

You must write these named blocks, and then define them by using the 1oadjava command or the
SQL CREATE FUNCTION, CREATE PROCEDURE, CREATE TRIGGER, or CREATE PACKAGE
statements.

Oracle Database 11g: Advanced PL/SQL 6 -17

Calling a Java Class Method by Using PL/SQL

DECLARE (:)

[N N)
BEGIN <
XX Java
EXCEPTION /

XX Virtual
END;

»)

|t
—

Machine

.
:::::
.....

Java
source class

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Calling a Java Class Method by Using PL/SQL

1. Use the loadjava utility from command-line or from an application to upload the Java
binaries and resources into a system-generated database table, where they are stored as Java
schema objects.

2. The 1oadjava command-line utility uses the SQL CREATE JAVA statements to load Java
source, class, or resource files into the RDBMS libunits. Libunits can be considered analogous to
the DLLs written in C, although they map one-to-one with Java classes, whereas DLLs can
contain multiple routines. Alternatively you can implicitly call CREATE JAVA from SQL*Plus.

3. When you load a Java class into the database, its methods are not published automatically,
because Oracle Database does not know which methods are safe entry points for calls from SQL.
To publish the Java class method, create the PL/SQL subprogram unit specification that
references the Java class methods.

4. Execute the PL/SQL subprogram that invokes the Java class method.

Oracle Database 11g: Advanced PL/SQL 6 -18

Development Steps for
Java Class Methods

1. Upload the Java file.

2. Publish the Java class method by creating the PL/SQL
subprogram unit specification that references the Java
class methods.

3. Execute the PL/SQL subprogram that invokes the Java
class method.

" Publish Execute

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Steps for Using Java Class Methods

Similar to using external C routines, the following steps are required to complete the setup before
executing the Java class method from PL/SQL:
1. Upload the Java file. This takes an external Java binary file and stores the Java code in the
database.
2. Publish the Java class method by creating the PL/SQL subprogram unit specification that
references the Java class methods.
3. Execute the PL/SQL subprogram that invokes the Java class method.

Oracle Database 11g: Advanced PL/SQL 6 -19

Loading Java Class Methods

1. Upload the Java file.
— At the operating system, use the 1oadjava command-line
utility to load either the Java class file or the Java source file.

 To load the Java source file, use:

>loadjava -user oe/oe Factorial.java

 To load the Java class file, use:

>loadjava -user oe/oe Factorial.class

— If you load the Java source file, you do not need to load the
Java class file.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Loading Java Class Methods

Java classes and their methods are stored in RDBMS libunits where the Java sources, binaries, and
resources can be loaded.

Use the 1oadjava command-line utility to load and resolve the Java classes. Using the 1loadjava
utility, you can upload the Java source, class, or resource files into an Oracle database, where they
are stored as Java schema objects. You can run 1loadjava from the command line or from an
application.

After the file is loaded, it is visible in the data dictionary views.

SELECT object name, object type FROM user objects
WHERE object type like 'J%';

OBJECT NAME OBJECT TYPE
Factorial JAVA CLASS
Factorial JAVA SOURCE
SELECT text FROM user source WHERE name = 'Factorial';
TEXT
public class Factorial {
public static int calcFactorial (int n) {
if (n == 1) return 1;
else return n * calcFactorial (n - 1) ; 1}

Oracle Database 11g: Advanced PL/SQL 6 - 20

Publishing a Java Class Method

1. Publish the Java class method by creating the PL/SQL
subprogram unit specification that references the Java

class methods.
— Identify the external body within a PL/SQL program to

publish the Java class method.
— The external body contains the name of the Java class

method.

CREATE OR REPLACE
{ PROCEDURE procedure name [(parameter list)]
| FUNCTION function name [(parameter list]...)]
RETURN datatype}
regularbody | |externalbody |
END;

{Is | AS} LANGUAGE JAVA
NAME 'method fullname (java type fullname
[, java type fullname]...)
[return java type fullname]';

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Publishing a Java Class Method
The publishing of Java class methods is specified in the AS LANGUAGE clause. This call

specification identifies the appropriate Java target routine, data type conversions, parameter mode
mappings, and purity constraints. You can publish value-returning Java methods as functions and

void Java methods as procedures.

Oracle Database 11g: Advanced PL/SQL 6 - 21

Publishing a Java Class Method

« Example:

CREATE OR REPLACE FUNCTION plstojavafac fun
» (N NUMBER)
RETURN NUMBER <
AS
LANGUAGE JAVA
NAME 'Factorial.calcFactorial
(int) return int'; —

- Java method definition: l

public class Factorial {
public static int calcFactorial (int n) {

if (n == 1) return 1;
else return n * calcFactorial (n - 1) ;

}
}

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Example

You want to publish a Java method named calcFactorial that returns the factorial of its
argument, as shown above:
* The PL/SQL function plstojavafac_ fun is created to identify the parameters and the Java
characteristics.
* The NAME clause string uniquely identifies the Java method.
* The parameter named N corresponds to the int argument.

Oracle Database 11g: Advanced PL/SQL 6 - 22

Executing the Java Routine

1. Upload the Java file.

2. Publish the Java class method by creating the PL/SQL
subprogram unit specification that references the Java
class methods.

3. |Execute the PL/SQL subprogram that invokes the Java

class method.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Example (continued)
You can call the calcFactorial class method by using the following command:

EXECUTE DBMS_OUTPUT.PUT_ LINE (plstojavafac fun (5));

Anonymous block completed
120

Alternatively, to execute a SELECT statement from the DUAL table:

SELECT plstojavafac fun (5)
FROM dual;

PLSTOJAVAFAC FUN(5)

Oracle Database 11g: Advanced PL/SQL 6 - 23

Creating Packages for Java Class Methods

CREATE OR REPLACE PACKAGE Demo pack

AUTHID DEFINER

AS

PROCEDURE plsToJ InSpec proc

» (x BINARY INTEGER, y VARCHAR2, z DATE) €—
END; 4

CREATE OR REPLACE PACKAGE BODY Demo pack

AS
PROCEDURE plsToJ InSpec proc

(x BINARY INTEGER, y VARCHAR2, z DATE)

IS LANGUAGE JAVA

NAME 'pkgl.class4.J InSp¢c meth

(int, java.lang.String, java.sqgl.Date)';

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Creating Packages for Java Class Methods
The examples in the slide create a package specification and body named Demo_pack.

The package is a container structure. It defines the specification of the PL/SQL procedure named
plsTod InSpec proc.

Note that you cannot tell whether this procedure is implemented by PL/SQL or by way of an external
procedure. The details of the implementation appear only in the package body in the declaration of
the procedure body.

Oracle Database 11g: Advanced PL/SQL 6 - 24

Quiz

Which of the following statement(s) is true with reference to
temporary extproc?
a. Oracle Database starts the external procedure agent,
extproc.
The extproc process loads the shared library.
The extproc process links the server to the external file
and executes the external procedure .

d. All of the above

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: d

Oracle Database 11g: Advanced PL/SQL 5 -25

Quiz

Call specifications does not:

a. Link the server to the external file and execute the external
procedure .

Dispatch the appropriate C or Java target procedure
Perform data type conversions

Perform parameter mode mappings

Perform automatic memory allocation and cleanup

Call Java methods or C procedures from database triggers

-0 oo0UCT

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: a

Oracle Database 11g: Advanced PL/SQL 5 - 26

Quiz

Select the correct order of the steps required to execute a Java
class method from PL/SQL.:

A. Publish the Java class method by creating the PL/SQL
subprogram unit specification that references the Java class
methods.

B. Upload the Java file using the 1oadjava command-line
utility.

C. Execute the PL/SQL subprogram that invokes the Java class
method.

a. A B,C
b.B, A C
c. C,AB
d. C,B, A

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: b

Oracle Database 11g: Advanced PL/SQL 10 - 27

Summary

In this lesson, you should have learned how to:

« Use external C routines and call them from your PL/SQL
programs

« Use Java methods and call them from your PL/SQL
programs

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Summary
You can embed calls to external C programs from your PL/SQL programs by publishing the external
routines in a PL/SQL block. You can take external Java programs and store them in the database to
be called from PL/SQL functions, procedures, and triggers.

Oracle Database 11g: Advanced PL/SQL 6 - 28

Practice 6: Overview

This practice covers the following topics:
* Writing programs to interact with C routines
« Writing programs to interact with Java code

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Practice 6: Overview

In this practice, you write two PL/SQL programs: One program calls an external C routine and the
second program calls a Java routine.

Use the OE schema for this practice.

For detailed instructions about performing this practice, see Appendix A, “Practice Solutions.”

Oracle Database 11g: Advanced PL/SQL 6 - 29

Performance and Tuning

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

* Understand and influence the compiler
« Tune PL/SQL code
« Enable intraunit inlining

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

In this lesson, the performance and tuning topics are divided into three main groups:
* Native and interpreted compilation
* Tuning PL/SQL code
* Intraunit inlining

In the compilation section, you learn about native and interpreted compilation.

In the “Tuning PL/SQL Code” section, you learn why it is important to write smaller, executable
sections of code, when to use SQL or PL/SQL, how bulk binds can improve performance, how to use
the FORALL syntax, how to rephrase conditional statements, about data types and constraint issues.

With inlining, the compiler reviews code to see whether it can be inlined rather than referenced. You
can influence the inlining process.

Oracle Database 11g: Advanced PL/SQL 7 -2

Lesson Agenda

» Using native and interpreted compilation methods
* Tuning PL/SQL code
« Enabling intraunit inlining

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 7 -3

Native and Interpreted Compilation

Two compilation methods:
* Interpreted compilation
— Default compilation method
— Interpreted at run time
* Native compilation

— Compiles into native code
— Stored in the SYSTEM tablespace

ORACLE 11 g D
DATABASE o

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Native and Interpreted Compilation

You can compile your PL/SQL code by using either native compilation or interpreted compilation.

With interpreted compilation, the PL/SQL statements in a PL/SQL program unit are compiled into an
intermediate form, machine-readable code, which is stored in the database dictionary and interpreted
at run time. You can use PL/SQL debugging tools on program units compiled for interpreted mode.

With PL/SQL native compilation, the PL/SQL statements in a PL/SQL program unit are compiled
into native code and stored in the SYSTEM tablespace. Because the native code does not have to be
interpreted at run time, it runs faster.

Native compilation applies only to PL/SQL statements. If your PL/SQL program contains only calls
to SQL statements, it may not run faster when natively compiled, but it will run at least as fast as the
corresponding interpreted code. The compiled code and the interpreted code make the same library
calls, so their action is the same.

The first time a natively compiled PL/SQL program unit is executed, it is fetched from the SYSTEM
tablespace into the shared memory. Regardless of how many sessions call the program unit, the
shared memory has only one copy of it. If a program unit is not being used, the shared memory it is
using might be freed, to reduce the memory load.

Oracle Database 11g: Advanced PL/SQL 7 -4

Deciding on a Compilation Method

« Use the interpreted mode when (typically during
development):

— You are using a debugging tool, such as SQL Developer
— You need the code compiled quickly

* Use the native mode when (typically post development):
— Your code is heavily PL/SQL based
— You are looking for increased performance in production

.
M
LM
‘‘‘‘‘‘‘‘
i
:

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Deciding on a Compilation Method

When deciding on a compilation method, you need to examine:
» Where you are in the development cycle
» What the program unit does

If you are debugging and recompiling program units frequently, the interpreted mode has these
advantages:
* You can use PL/SQL debugging tools on program units compiled for interpreted mode (but not
for those compiled for native mode).
» Compiling for interpreted mode is faster than compiling for native mode.

After completing the debugging phase of development, consider the following in determining
whether to compile a PL/SQL program unit for native mode:

» The native mode provides the greatest performance gains for computation-intensive procedural
operations. Examples are data warehouse applications and applications with extensive server-
side transformations of data for display.

* The native mode provides the least performance gains for PL/SQL subprograms that spend most
of their time executing SQL.

* When many program units (typically over 15,000) are compiled for native execution, and are
simultaneously active, the large amount of shared memory required might affect system
performance.

Oracle Database 11g: Advanced PL/SQL 7 -5

Setting the Compilation Method

 PLSQL CODE TYPE: Specifies the compilation mode for
the PL/SQL library units

PLSQL CODE TYPE = { INTERPRETED | NATIVE }

 PLSQL OPTIMIZE LEVEL: Specifies the optimization
level to be used to compile the PL/SQL library units

PLSQL OPTIMIZE LEVEL = { 0 | 1 | 2 | 3}

* In general, for fastest performance, use the following
setting:

PLSQL CODE TYPE = NATIVE

PLSQL OPTIMIZE LEVEL = 2

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using the Initialization Parameters for PL/SQL Compilation
The PLSQL CODE_ TYPE Parameter
The PLSQL CODE_TYPE compilation parameter determines whether the PL/SQL code is natively
compiled or interpreted.
If you choose INTERPRETED:
« PL/SQL library units are compiled to PL/SQL bytecode format.
» These modules are executed by the PL/SQL interpreter engine.
If you choose NATIVE:
« PL/SQL library units (with the possible exception of top-level anonymous PL/SQL blocks) are

compiled to native (machine) code.
» Such modules are executed natively without incurring interpreter overhead.

When the value of this parameter is changed, it has no effect on the PL/SQL library units that have
already been compiled. The value of this parameter is stored persistently with each library unit. If a
PL/SQL library unit is compiled natively, all subsequent automatic recompilations of that library unit
use the native compilation. In Oracle Database 11g, native compilation is easier and more integrated,
with fewer initialization parameters to set.

Oracle Database 11g: Advanced PL/SQL 7 -6

Using the Initialization Parameters for PL/SQL Compilation (continued)
The PLSQL OPTIMIZE LEVEL Parameter

This parameter specifies the optimization level that is used to compile the PL/SQL library units. The
higher the setting of this parameter, the more effort the compiler makes to optimize the PL/SQL
library units. The available values are (0, 1, 2, and 3):

0: Maintains the evaluation order and hence the pattern of side effects, exceptions, and package
initializations of Oracle9i and earlier releases. Also removes the new semantic identity of
BINARY INTEGER and PLS_ INTEGER, and restores the earlier rules for the evaluation of
integer expressions. Although the code runs somewhat faster than it did in Oracle9i, the use of
level 0 forfeits most of the performance gains of PL/SQL achieved with Oracle Database 10g
and later releases.

1: Applies a wide range of optimizations to PL/SQL programs, including the elimination of
unnecessary computations and exceptions, but generally does not move source code out of its
original source order.

2: Applies a wide range of modern optimization techniques beyond those of level 1, including
changes that may move source code relatively far from its original location.

3: This value is available in Oracle Database 11g. It applies a wide range of optimization
techniques beyond those of level 2, automatically including techniques not specifically
requested. This enables procedure inlining, which is an optimization process that replaces
procedure calls with a copy of the body of the procedure to be called. The copied procedure
almost always runs faster than the original call. To allow subprogram inlining, either accept the
default value of the PLSQL OPTIMIZE LEVEL initialization parameter (which is 2) or set it
to 3. With PLSQL OPTIMIZE LEVEL =2, you must specify each subprogram to be inlined.
With PLSQL OPTIMIZE LEVEL = 3, the PL/SQL compiler seeks opportunities to inline
subprograms beyond those that you specify.

Generally, setting this parameter to 2 pays off in terms of better execution performance. If, however,
the compiler runs slowly on a particular source module or if optimization does not make sense for
some reason (for example, during rapid turnaround development), setting this parameter to 1 results
in almost as good a compilation with less use of compile-time resources. The value of this parameter
is stored persistently with the library unit.

Oracle Database 11g: Advanced PL/SQL 7 -7

Viewing the Compilation Settings

Use the USER |ALL |DBA PLSQL OBJECT SETTINGS data
dictionary views to display the settings for a PL/SQL object:

DESCRIBE ALL PLSQL OBJECT SETTINGS

Name Null? Type

OWNER NOT NULL VARCHAR2 (30)
NAME NOT NULL VARCHAR2 (30)
TYPE VARCHAR2 (12)
PLSQL OPTIMIZE LEVEL NUMBER

PLSQL CODE TYPE VARCHAR?2 (4000)
PLSQL DEBUG VARCHAR?2 (4000)
PLSQL WARNINGS VARCHAR?2 (4000)
NLS LENGTH SEMANTICS VARCHAR2 (4000)
PLSQL CCFLAGS VARCHAR2 (4000)
PLSCOPE SETTINGS VARCHAR2 (4000)

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Displaying the PL/SQL Initialization Parameters
The columns of the USER_PLSQL OBJECTS_ SETTINGS data dictionary view include:

Owner: The owner of the object. This column is not displayed in the
USER_PLSQL_OBJECTS SETTINGS view.

Name: The name of the object

Type: The available choices are PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY,
TRIGGER, TYPE, or TYPE BODY.

PLSQL OPTIMIZE LEVEL: The optimization level that was used to compile the object
PLSQL CODE_TYPE: The compilation mode for the object

PLSQL DEBUG: Specifies whether or not the object was compiled for debugging

PLSQL WARNINGS: The compiler warning settings used to compile the object

NLS LENGTH_ SEMANTICS: The national language support (NLS) length semantics used to
compile the object

PLSQL CCFLAGS: The conditional compilation flag used to compile the object

PLSCOPE SETTINGS: Controls the compile time collection, cross reference, and storage of
PL/SQL source code identifier data (new in Oracle Database 11g)

Oracle Database 11g: Advanced PL/SQL 7 -8

Viewing the Compilation Settings

SELECT name, plsqgl code type, plsqgl optimize level

FROM user plsgl object settings;

NAME PLSQL CODE TYP PLSQL OPTIMIZE LEVEL
ACTIONS T INTERPRETED 2
ACTION T INTERPRETED 2
ACTION V INTERPRETED 2
ADD ORDER ITEMS INTERPRETED 2
CATALOG TYP INTERPRETED 2
CATALOG TYP INTERPRETED 2
CATALOG TYP INTERPRETED 2
CATEGORY TYP INTERPRETED 2
CATEGORY TYP INTERPRETED 2
COMPOSITE CATEGORY TYP INTERPRETED 2

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Displaying the PL/SQL Initialization Parameters (continued)

Set the values of the compiler initialization parameters by using the ALTER SYSTEM or ALTER
SESSTON statements.

The parameters’ values are accessed when the CREATE OR REPLACE or ALTER statements are
executed.

Oracle Database 11g: Advanced PL/SQL 7 -9

Setting Up a Database for Native Compilation

* This requires DBA privileges.
 The PLSQL CODE_TYPE compilation parameter must be
set to NATIVE.

« The benefits apply to all the built-in PL/SQL packages that
are used for many database operations.

ALTER SYSTEM SET PLSQL CODE TYPE = NATIVE;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Setting Up a Database for Native Compilation

If you have DBA privileges, you can set up a new database for PL/SQL native compilation by setting
the PLSQL CODE_TYPE compilation parameter to NATIVE. The performance benefits apply to all

built-in PL/SQL packages that are used for many database operations.

Oracle Database 11g: Advanced PL/SQL 7 -10

Compiling a Program Unit for Native Compilation

SELECT name, plsqgl code type, plsgl optimize level
FROM user plsgl object settings

WHERE name = 'ADD ORDER ITEMS';

NAME PLSQL CODE T PLSQL OPTIMIZE LEVEL
ADD ORDER_ITENS INTERPRETED 2
ALTER SESSION SET PLSQL CODE TYPE = 'NATIVE'; (:)

ALTER PROCEDURE add order items COMPILE; (:)

SELECT name, plsqgl code type, plsgl optimize level @
FROM user plsqgl object settings

WHERE name = 'ADD ORDER ITEMS';
NAME PLSQL CODE T PLSQL OPTIMIZE LEVEL
ADD ORDER ITEMS NATIVE 2

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Changing PL/SQL Initialization Parameters: Example

To change a compiled PL/SQL object from interpreted code type to native code type, you must set
the PLSQL CODE_TYPE parameter to NATIVE (optionally set the other parameters), and then

recompile the program.

In the example in the slide:

The compilation type is checked on the ADD ORDER ITEMS program unit.

The compilation method is set to NATIVE at the session level.

The ADD ORDER_ITEMS program unit is recompiled.

The compilation type is checked again on the ADD ORDER _ITEMS program unit to verify that
it changed.

Ll o e

If you want to compile an entire database for native or interpreted compilation, scripts are provided
to help you do so.
* You must have DBA privileges.
* Set PLSQL CODE_TYPE at the system level.
* Run the dbmsupgnv. sgl-supplied script that is found in the
\Oraclehome\product\11.1.0\db 1\RDBMS\ADMIN folder.

For detailed information, see the Oracle Database PL/SQOL Language Reference 11g reference
manual.

Oracle Database 11g: Advanced PL/SQL 7 - 11

Lesson Agenda

* Using native and interpreted compilation methods
* Tuning PL/SQL code
« Enabling intraunit inlining

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 7 -12

Tuning PL/SQL Code

You can tune your PL/SQL code by:

* Identifying the data type and constraint issues
— Data type conversion
— The NOT NULL constraint
— PLS INTEGER
— SIMPLE INTEGER

* Writing smaller executable sections of code

« Comparing SQL with PL/SQL

* Understanding how bulk binds can improve performance
« Using the FORALL support with bulk binding

« Handling and saving exceptions with the SAVE
EXCEPTIONS syntax

* Rephrasing conditional statements

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Tuning PL/SQL Code

By tuning your PL/SQL code, you can tailor its performance to best meet your needs. In the
following pages, you learn about some of the main PL/SQL tuning issues that can improve the
performance of your PL/SQL applications.

Oracle Database 11g: Advanced PL/SQL 7 -13

Avoiding Implicit Data Type Conversion

« PL/SQL performs implicit conversions between structurally
different data types.

« Example: When assigning a PLS INTEGER variable to a
NUMBER variable

DECLARE
n NUMBER;
BEGIN
n :=n + 15; -- converted
n :=n + 15.0; -- not converted
END; s
numbers -, -+ StiNgs
dates

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Avoiding Implicit Data Type Conversion

At run time, PL/SQL automatically performs implicit conversions between structurally different data
types. By avoiding implicit conversions, you can improve the performance of your code. The major
problems with implicit data type conversion are:

* [t is nonintuitive and can result in unexpected results.

* You have no control over the implicit conversion.

In the slide example, assigning a PLS INTEGER variable to a NUMBER variable or vice versa results
in a conversion, because their representations are different. Such implicit conversions can happen
during parameter passing as well. The integer literal 15 is represented internally as a signed 4-byte
quantity, so PL/SQL must convert it to an Oracle number before the addition. However, the floating-
point literal 15.0 is represented as a 22-byte Oracle number, so no conversion is necessary.

To avoid implicit data type conversion, use the following built-in functions:
TO_DATE

e TO NUMBER

e TO CHAR

e CAST

Oracle Database 11g: Advanced PL/SQL 7 - 14

Understanding the NOT NULL Constraint

PROCEDURE calc m IS
|{m NUMBER NOT NULL:=0; |

a NUMBER; The value of the expression a + b is
b NUMBER; assigned to a temporary variable,

which is then tested for nullity.
BEGIN e Y

| m := a + b; |

PROCEDURE calc m IS

m NUMBER; --no constraint A better way to check nullity; no
performance overhead
BEGIN _——

m := a + b;

IF m IS NULL THEN
-- raise error

END IF;

END;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

The NOT NULL Constraint

In PL/SQL, using the NOT NULL constraint incurs a small performance cost. Therefore, use it with
care. Consider the example on the left in the slide that uses the NOT NULL constraint for m.

Because m is constrained by NOT NULL, the value of the expression a + b is assigned to a temporary
variable, which is then tested for nullity. If the variable is not null, its value is assigned to m.
Otherwise, an exception is raised. However, if m were not constrained, the value would be assigned
to m directly.

A more efficient way to write the same example is shown in the bottom half of the slide.

Note that the subtypes NATURALN and POSTIVEN are defined as the NOT NULL subtypes of
NATURAL and POSITIVE. Using them incurs the same performance cost as seen in the slide’s first

example.

Using the NOT NULL Constraint Not Using the Constraint
Slower Faster
No extra coding is needed. Requires extra coding that is error prone

When an error is implicitly raised, the When an error is explicitly raised, the
value of mis preserved. old value of m is lost.

Oracle Database 11g: Advanced PL/SQL 7 -15

Using the PLLS INTEGER Data Type for Integers

Use PLS INTEGER when dealing with integer data.

« ltis an efficient data type for integer variables.
* It requires less storage than INTEGER or NUMBER.

* Its operations use machine arithmetic, which is faster than
library arithmetic.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using the PLS INTEGER Data Type for All Integer Operations

When you need to declare an integer variable, use the PLS INTEGER data type, which is the most
efficient numeric type. That is because PLS INTEGER values require less storage than INTEGER or
NUMBER values, which are represented internally as 22-byte Oracle numbers. Also, PLS INTEGER
operations use machine arithmetic, so they are faster than BINARY INTEGER, INTEGER, or
NUMBER operations, which use library arithmetic.

Furthermore, INTEGER, NATURAL, NATURALN, POSITIVE, POSITIVEN, and SIGNTYPE are
constrained subtypes. Their variables require precision checking at run time that can affect the
performance.

The BINARY FLOAT and BINARY DOUBLE data types are also faster than the NUMBER data type.

Oracle Database 11g: Advanced PL/SQL 7 -16

Using the SIMPLE INTEGER Data Type

« Definition:
— Is a predefined subtype
— Has the range —2147483648 .. 2147483648

— Does not include a null value
— Is allowed anywhere in PL/SQL where the PLS INTEGER
data type is allowed

+ Benefits:

— Eliminates the overhead of overflow
checking

— |s estimated to be 2—10 times faster
when compared with the PLS INTEGER

type with native PL/SQL compilation

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using the SIMPLE INTEGER Data Type

The SIMPLE INTEGER data type is a predefined subtype of the BINARY INTEGER (or

PLS INTEGER) data type that has the same numeric range as BINARY INTEGER. It differs
significantly from PLLS INTEGER in its overflow semantics. Incrementing the largest

SIMPLE INTEGER value by one silently produces the smallest value, and decrementing the
smallest value by one silently produces the largest value. These “wrap around” semantics conform to
the Institute of Electrical and Electronics Engineers (IEEE) standard for 32-bit integer arithmetic.

The key features of the SIMPLE INTEGER predefined subtype are the following:
* Includes the range of —2147483648.. +2147483648
* Has a not null constraint

* Wraps rather than overflows
 Is faster than PLS INTEGER

G Ny =

Without the overhead of overflow checking and nullness checking, the SIMPLE INTEGER data
type provides significantly better performance than PLS INTEGER when the parameter

PLSQL CODE_TYPE is set to native, because arithmetic operations on the former are performed
directly in the machine’s hardware. The performance difference is less noticeable when the
parameter PLSQL _CODE_TYPE is set to interpreted but even with this setting, the

SIMPLE INTEGER type is faster than the PLS INTEGER type.

Oracle Database 11g: Advanced PL/SQL 7 -17

Modularizing Your Code

« Limit the number of lines of code between a BEGIN and
END to about a page or 60 lines of code.

« Use packaged programs to keep each executable section
small.

* Use local procedures and functions to hide logic.

 Use a function interface to hide formulas and business
rules.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Write Smaller Executable Sections

By writing smaller sections of executable code, you can make the code easier to read, understand,
and maintain. When developing an application, use a stepwise refinement. Make a general
description of what you want your program to do, and then implement the details in subroutines.
Using local modules and packaged programs can help keep each executable section small. This
makes it easier for you to debug and refine your code.

Oracle Database 11g: Advanced PL/SQL 7 -18

Comparing SQL with PL/SQL

Each has its own benefits:
- SQL:
— Accesses data in the database
— Treats data as sets
« PL/SQL:
— Provides procedural capabilities
— Has more flexibility built into the language

™

=
A\

-
-
amE mamamm

s e W

-
-

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

SQL Versus PL/SQL

Both SQL and PL/SQL have their strengths. However, there are situations where one language is
more appropriate to use than the other.

You use SQL to access data in the database with its powerful statements. SQL processes sets of data
as groups rather than as individual units. The flow-control statements of most programming
languages are absent in SQL, but present in PL/SQL. When using SQL in your PL/SQL applications,
be sure not to repeat a SQL statement. Instead, encapsulate your SQL statements in a package and
make calls to the package.

Using PL/SQL, you can take advantage of the PL/SQL-specific enhancements for SQL, such as
autonomous transactions, fetching into cursor records, using a cursor FOR loop, using the
RETURNING clause for information about modified rows, and using BULK COLLECT to improve
the performance of multiple-row queries.

Though there are advantages of using PL/SQL over SQL in several cases, use PL/SQL with caution,
especially under the following circumstances:

» Performing high-volume inserts

 Using user-defined PL/SQL functions

» Using external procedure calls

« Usingthe utl file package as an alternative to SQL*Plus in high-volume reporting

Oracle Database 11g: Advanced PL/SQL 7 -19

Comparing SQL with PL/SQL

« Some simple set processing is markedly faster than the
equivalent PL/SQL.

BEGIN
INSERT INTO inventories2
SELECT product id, warehouse id
FROM main_ inventories;

END;

* Avoid using procedural code when it may be better to
use SQL.

...FOR I IN 1..5600 LOOP ‘
counter := counter + 1;
SELECT product id, warehouse id

INTO v p id, v _wh id
FROM big inventories WHERE v p id = counter;
INSERT INTO inventories2 VALUES(v_p id, v_wh id);
END LOOP;...

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

SQL Versus PL/SQL (continued)

The SQL statement explained in the slide is a great deal faster than the equivalent PL/SQL loop.
Take advantage of the simple set processing operations that are implicitly available in the SQL
language, as it can run markedly faster than the equivalent PL/SQL loop. Avoid writing procedural
code when SQL would work better.

However, there are occasions when you will get better performance from PL/SQL, even when the
process could be written in SQL. Correlated updates are slow. With correlated updates, a better
method is to access only correct rows by using PL/SQL. The following PL/SQL loop is faster than
the equivalent correlated update SQL statement.
DECLARE
CURSOR cv_raise IS
SELECT deptno, increase
FROM emp raise;
BEGIN
FOR dept IN cv_raise LOOP
UPDATE big emp

SET sal = sal * dept.increase
WHERE deptno = dept.deptno;
END LOOP;

Oracle Database 11g: Advanced PL/SQL 7 -20

Comparing SQL with PL/SQL

* Instead of:

INSERT INTO order items
(order id, line item id, product id,
unit price, quantity)

VALUES (...

» Create a stand-alone procedure:

insert order item (
2458, 6, 3515, 2.00, 4);

* Or a packaged procedure:

orderitems.ins (
2458, 6, 3515, 2.00, 4);

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Encapsulating SQL Statements

From a design standpoint, do not embed your SQL statements directly within the application code. It
1s better if you write procedures to perform your SQL statements.

Pros
» If you design your application so that all programs that perform an insert on a specific table use
the same INSERT statement, your application will run faster because of less parsing and
reduced demands on the System Global Area (SGA) memory.
* Your program will also handle data manipulation language (DML) errors consistently.

Cons
* You may need to write more procedural code.
* You may need to write several variations of update or insert procedures to handle the
combinations of columns that you are updating or inserting into.

Oracle Database 11g: Advanced PL/SQL 7 - 21

Using Bulk Binding

Use bulk binds to reduce context switches between the PL/SQL
engine and the SQL engine.

PL/SQL run-time engine > SQL engine
PL/SQL block
Procedural SQL
FORALL j IN 1..1000 statement statement
INSERT ..
(orderId(j), executor executor

OrderDate(j), ..);

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Bulk Binding

With bulk binds, you can improve performance by decreasing the number of context switches
between the SQL and PL/SQL engines. When a PL/SQL program executes, each time a SQL
statement is encountered, there is a switch between the PL/SQL engine and the SQL engine. The
more the number of switches, the less the efficiency.

Improved Performance

Bulk binding enables you to implement array fetching. With bulk binding, entire collections, not just
individual elements, are passed back and forth. Bulk binding can be used with nested tables, varrays,
and associative arrays.

The more the rows affected by a SQL statement, the greater is the performance gain with bulk
binding.

Oracle Database 11g: Advanced PL/SQL 7 - 22

Using Bulk Binding

Bind whole arrays of values simultaneously, rather than looping
to perform fetch, insert, update, and delete on multiple rows.

* |nstead of:

FOR i IN 1 .. 50000 LOOP
INSERT INTO bulk bind example tbl
VALUES (...);
END LOOP;

« Use:

FORALL i IN 1 .. 50000
INSERT INTO bulk bind example tbl
VALUES(...);

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Bulk Binding (continued)

In the first example shown in the slide, one row at a time is inserted into the target table. In the
second example, the FOR loop is changed to a FORALL (which has an implicit loop) and all the
immediately subsequent DML statements are processed in bulk. The entire code examples, along
with the timing statistics for running each FOR loop example, are as follows.

First, create the demonstration table:
CREATE TABLE bulk bind example tbl (
num col NUMBER,
date col DATE,
char col VARCHAR2 (40)) ;

Second, set the SQL*Plus TIMING variable on. Setting it on enables you to see the approximate

elapsed time of the last SQL statement:
SET TIMING ON

Third, run this block of code that includes a FOR loop to insert 50,000 rows:
DECLARE
TYPE typ numlist IS TABLE OF NUMBER;
TYPE typ datelist IS TABLE OF DATE;
TYPE typ charlist IS TABLE OF VARCHAR2 (40)
INDEX BY PLS INTEGER;
-- continued on the next page

Oracle Database 11g: Advanced PL/SQL 7 - 23

Using Bulk Binding (continued)

-- continued from previous page

n typ numlist := typ numlist();
d typ datelist := typ datelist();
¢ typ charlist;

BEGIN
FOR i1 IN 1 .. 50000 LOOP
n.extend;
n(i) := 1i;
d.extend;
d(i) := sysdate + 1;
c(i) := 1lpad(1l, 40);
END LOOP;
FOR I in 1 .. 50000 LOOP
INSERT INTO bulk bind example tbl
VALUES (n(i), d(i), c(i));
END LOOP;
END;

/

2.184ms elapsed

Last, run this block of code that includes a FORALL loop to insert 50,000 rows. Note the significant
decrease in the timing when using the FORALL processing:
DECLARE
TYPE typ numlist IS TABLE OF NUMBER;
TYPE typ datelist IS TABLE OF DATE;
TYPE typ charlist IS TABLE OF VARCHAR2 (40)
INDEX BY PLS INTEGER;

n typ numlist
d typ datelist
c typ charlist;

typ numlist () ;
typ datelist () ;

BEGIN

FOR i IN 1 .. 50000 LOOP
n.extend;
n(i) := 1i;
d.extend;
d(i) := sysdate + 1;
c(i) := 1lpad(1, 40);

END LOOP;

FORALL I in 1 .. 50000

INSERT INTO bulk bind example tbl
VALUES (n(i), d(i), c(i));
END;

/

828ms elapsed

Oracle Database 11g: Advanced PL/SQL 7 - 24

Using Bulk Binding

Use BULK COLLECT to improve performance:

CREATE OR REPLACE PROCEDURE process customers
(p_account mgr customers.account mgr id%TYPE)
IS
TYPE typ numtab IS TABLE OF
customers.customer id%TYPE;
TYPE typ chartab IS TABLE OF
customers.cust last name%TYPE;
TYPE typ emailtab IS TABLE OF
customers.cust email%TYPE;

v_custnos typ numtab;

v_last names typ chartab;

v_emails typ emailtab;
BEGIN

SELECT customer id, cust last name, cust email
| BULK COLLECT INTO v_custnos, v_last_names, v_emails |
FROM customers
WHERE account mgr id = p account mgr;

END process_cus tomers;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using BULK COLLECT

When you require a large number of rows to be returned from the database, you can use the BULK
COLLECT option for queries. This option enables you to retrieve multiple rows of data in a single

request. The retrieved data is then populated into a series of collection variables. This query runs
significantly faster than if it were done without the BULK COLLECT.

You can use the BULK COLLECT option with explicit cursors too:
BEGIN
OPEN cv_customers INTO customers rec;
FETCH cv_customers BULK COLLECT INTO
v_custnos, v_last name, v_mails;

You can also use the LIMIT option with BULK COLLECT. This gives you control over the amount

of processed rows in one step.
FETCH cv_customers BULK COLLECT
INTO v_custnos, v_last name, v_email
LIMIT 200;

Oracle Database 11g: Advanced PL/SQL 7 - 25

Using Bulk Binding

Use the RETURNING clause to retrieve information about the
rows that are being modified:

DECLARE
TYPE typ_replist IS VARRAY(100) OF NUMBER;
TYPE typ numlist IS TABLE OF
orders.order total%TYPE;
repids typ replist :=

typ replist (153, 155, 156, 161);
totlist typ numlist;
c big total CONSTANT NUMBER := 60000;
BEGIN
FORALL i IN repids.FIRST..repids.LAST
UPDATE orders

SET order total = .95 * order total

WHERE sales rep id = repids(i)

AND order total > c big total

|RETURNING order total BULK COLLECT INTO Totlist;l
END;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

The RETURNING Clause

Often, applications need information about the row that is affected by a SQL operation; for example,
to generate a report or take action. Using the RETURNING clause, you can retrieve information about
the rows that you modified with the INSERT, UPDATE, and DELETE statements. This can improve
performance, because it enables you to make changes, and at the same time, collect information
about the data being changed. As a result, fewer network round trips, less server CPU time, fewer
cursors, and less server memory are required. Without the RETURNING clause, you need two
operations: one to make the change, and a second operation to retrieve information about the change.
In the slide example, the order total information is retrieved from the ORDERS table and
collected into the tot1ist collection. The tot1list collection is returned in bulk to the PL/SQL
engine.

If you did not use the RETURNING clause, you would need to perform two operations, one for the
UPDATE, and another for the SELECT:

UPDATE orders SET order total = .95 * order_ total
WHERE sales rep id = p id
AND order total > c big total;

SELECT order total FROM orders
WHERE sales rep id = p_id AND order total > c_big total;

Oracle Database 11g: Advanced PL/SQL 7 - 26

The RETURNING Clause (continued)

In the following example, you update the credit limit of a customer and at the same time retrieve the

customer’s new credit limit into a SQL Developer environment variable:
CREATE OR REPLACE PROCEDURE change credit

(p_in_id IN customers.customer id%TYPE,
o _credit OUT NUMBER)
IS
BEGIN
UPDATE customers
SET credit limit = credit limit * 1.10

WHERE customer id = p in id
RETURNING credit limit INTO o credit;
END change credit;
/
VARIABLE g credit NUMBER
EXECUTE change credit (109, :g credit)
PRINT g credit

Oracle Database 11g: Advanced PL/SQL 7 - 27

Using SAVE EXCEPTIONS

* You can use the SAVE EXCEPTIONS keyword in your
FORALL statements:

FORALL index IN lower bound..upper bound
|SAVE EXCEPTIONS'
{insert stmt | update stmt | delete stmt}

« Exceptions raised during execution are saved in the
%BULK EXCEPTIONS cursor attribute.

 The attribute is a collection of records with two fields:

Field Definition

ERROR INDEX [Holds the iteration of the FORALL statement where the
exception was raised

ERROR_ CODE Holds the corresponding Oracle error code

— Note that the values always refer to the most recently
executed FORALL statement.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Handling FORALL Exceptions
To handle the exceptions encountered during a BULK BIND operation, you can add the keyword
SAVE EXCEPTIONS to your FORALL statement. Without it, if a row fails during the FORALL loop,
the loop execution is terminated. SAVE EXCEPTIONS allows the loop to continue processing and is
required if you want the loop to continue.

All exceptions raised during the execution are saved in the $BULK EXCEPTIONS cursor attribute,

which stores a collection of records. This cursor attribute is available only from the exception
handler.

Each record has two fields. The first field, $BULK _EXCEPTIONS (i) . ERROR_INDEX, holds the
“iteration” of the FORALL statement during which the exception was raised. The second field,
BULK EXCEPTIONS (i) . ERROR_CODE, holds the corresponding Oracle error code.

The values stored by $BULK EXCEPTIONS always refer to the most recently executed FORALL
statement. The number of exceptions is saved in the count attribute of $BULK EXCEPTIONS; that
1S, $BULK_EXCEPTIONS.COUNT. Its subscripts range from 1 to COUNT. If you omit the SAVE
EXCEPTIONS keyword, execution of the FORALL statement stops when an exception is raised. In
that case, SQL%BULK EXCEPTIONS.COUNT returns 1, and SQL%BULK EXCEPTIONS contains
just one record. If no exception is raised during the execution, SQL$BULK EXCEPTIONS.COUNT
returns 0.

Oracle Database 11g: Advanced PL/SQL 7 - 28

Handling FORALL Exceptions

DECLARE
TYPE NumList IS TABLE OF NUMBER;
num_tab NumList :=
NumList (100,0,110,300,0,199,200,0,400) ;
bulk errors EXCEPTION;
| PRAGMA EXCEPTION INIT (bulk errors, -24381);|
BEGIN
FORALL i IN num tab.FIRST..num tab.LAST
SAVE EXCEPTIONS
DELETE FROM orders WHERE order total < 500000/num tab (i) ;
EXCEPTION WHEN bulk errors THEN
DBMS OUTPUT.PUT LINE ('Number of errors is: '
| | SQL%BULK EXCEPTIONS.COUNT) ;
FOR j in 1. .SQL%BULK EXCEPTIONS.COUNT|
LOOP
DBMS_OUTPUT.PUT LINE (
TO_CHARkSQL%BULK EXCEPTIONS (j) .error index) |||
|/|||
SQLERRM ([-SQL%BULK EXCEPTIONS (j) .error code)) ;|
END LOOP;
END;
/

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Example

In this example, the EXCEPTION INIT pragma defines an exception named BULK ERRORS and
associates the name with the ORA-24381 code, which is an “Error in Array DML.” The
PL/SQL block raises the predefined exception ZERO DIVIDE when i equals 2, 5, 8. After the bulk
bind is completed, SQL$BULK_EXCEPTIONS.COUNT returns 3, because the code tried to divide
by zero three times. To get the Oracle error message (which includes the code), you pass
SQL%BULK EXCEPTIONS (i) . ERROR CODE to the error-reporting function SQLERRM. Here is
the output:

Number of errors is: 5

Number of errors is: 3

2 / ORA-01476: divisor is equal to zero

5 / ORA-01476: divisor is equal to zero

8 / ORA-01476: divisor is equal to zero

Oracle Database 11g: Advanced PL/SQL 7 -29

Rephrasing Conditional
Control Statements

In logical expressions, PL/SQL stops evaluating the expression
as soon as the result is determined.

« Scenario 1:

IF TRUE |FALSE OR (v_sales rep id IS NULL) THEN
—)

END IF;

e« Scenario 2:

IF credit ok(cust id) AND (v _order total < 5000) THEN

END IF;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Rephrasing Conditional Control Statements
In logical expressions, improve performance by carefully tuning conditional constructs.

When evaluating a logical expression, PL/SQL stops evaluating the expression as soon as the result is
determined. For example, in the first scenario in the slide, which involves an OR expression, when
the value of the left operand yields TRUE, PL/SQL need not evaluate the right operand (because OR
returns TRUE if either of its operands is true).

Now, consider the second scenario in the slide, which involves an AND expression. The Boolean
function CREDIT OK is always called. However, if you switch the operands of AND as follows, the
function is called only when the expression v_order total < 5000 is true (because AND

returns TRUE only if both its operands are true):
IF (v_order total < 5000) AND credit ok(cust id) THEN

END IF;

Oracle Database 11g: Advanced PL/SQL 7 - 30

Rephrasing Conditional
Control Statements

If your business logic results in one condition being true, use
the ELSIF syntax for mutually exclusive clauses:

IF v_acct mgr = 145 THEN IF v_acct _mgr = 145
process acct 145; THEN

END IF; process acct 145;

IF v_acct mgr = 147 THEN ELSIF v_acct _mgr = 147

THEN
process acct 147;

ELSIF v _acct mgr = 148
THEN

process acct 148;

process acct 147;

END IF;

IF v_acct mgr = 148 THEN
process acct 148;

END IF; ELSIF v_acct mgr = 149

IF v _acct mgr = 149 THEN THEN /
process _acct 149; L) process_acct 149; /

END IF; Y| | END IF; af

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Mutually Exclusive Conditions

If you have a situation where you are checking a list of choices for a mutually exclusive result, use
the ELSIF syntax, as it offers the most efficient implementation. With ELSIF, after a branch
evaluates to TRUE, the other branches are not executed.

In the example shown on the right in the slide, every IF statement is executed. In the example on the
left, after a branch is found to be true, the rest of the branch conditions are not evaluated.
Sometimes you do not need an IF statement. For example, the following code can be rewritten

without an IF statement:
IF date ordered < sysdate + 7 THEN

late order := TRUE;
ELSE

late order := FALSE;
END IF;

--rewritten without an IF statement:
late order := date ordered < sysdate + 7;

Oracle Database 11g: Advanced PL/SQL 7 - 31

Passing Data Between PL/SQL Programs

« The flexibility built into PL/SQL enables you to pass:
— Simple scalar variables
— Complex data structures

* You can use the NOCOPY hint to improve performance with
the IN OUT parameters.

%
[»]
>

-

-

%

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
\ 4

- “1
e e

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Passing Data Between PL/SQL Programs

You can pass simple scalar data or complex data structures between PL/SQL programs.

When passing collections as parameters, you may encounter a slight decrease in performance as
compared with passing scalar data but the performance is still comparable. However, when passing
IN OUT parameters that are complex (such as collections) to a procedure, you will experience
significantly more overhead, because a copy of the parameter value is stored before the routine is
executed. The stored value must be kept in case an exception occurs. You can use the NOCOPY
compiler hint to improve performance in this situation. NOCOPY instructs the compiler not to make a
backup copy of the parameter that is being passed. However, be careful when you use the NOCOPY
compiler hint, because your results are not predictable if your program encounters an exception.

Oracle Database 11g: Advanced PL/SQL 7 - 32

Passing Data Between PL/SQL Programs

Pass records as parameters to encapsulate data, and write and
maintain less code:

DECLARE
TYPE CustRec IS RECORD (
customer id customers.customer id%TYPE,
cust last name VARCHAR2(20),
cust email VARCHAR2 (30) ,
credit limit NUMBER (9, 2)) ;
PROCEDURE raise credit (cust_info;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Passing Records as Arguments

You can declare user-defined records as formal parameters of procedures and functions as shown in
the slide. By using records to pass values, you are encapsulating the data being passed. This requires
less coding than defining, assigning, and manipulating each record field individually.
When you call a function that returns a record, use the notation:

function name (parameters) .field name
For example, the following call to the NTH_HIGHEST ORD_TOTAL function references the
ORDER_TOTAL field in the ORD INFO record:

DECLARE
TYPE OrdRec IS RECORD (
v_order_ id NUMBER (6) ,

v_order total REAL);
v_middle_ total REAL;

FUNCTION nth highest total (n INTEGER) RETURN OrdRec IS
order info OrdRec;

BEGIN
RETURN order info; -- return record
END;
BEGIN -- call function
v_middle total := nth highest total(10).v order total;

Oracle Database 11g: Advanced PL/SQL 7 - 33

Passing Data Between PL/SQL Programs

Use collections as arguments:

PACKAGE cust actions IS
TYPE NameTabTyp IS TABLE OF
customer.cust last name%TYPE
INDEX BY PLS INTEGER;
TYPE CreditTabTyp IS TABLE OF
customers.credit limit%TYPE
INDEX BY PLS INTEGER;
PROCEDURE credit batch(|name tab IN NameTabTyp,|
credit tab IN CreditTabTyp,
e.o)j
PROCEDURE log names ([name_tab IN NameTabTyp |);
END cust actions;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Passing Collections as Arguments

You can declare collections as formal parameters of procedures and functions. In the example in the
slide, associative arrays are declared as the formal parameters of two packaged procedures. If you
were to use scalar variables to pass the data, you would need to code and maintain many more
declarations.

Oracle Database 11g: Advanced PL/SQL 7 - 34

Lesson Agenda

* Using native and interpreted compilation methods
* Tuning PL/SQL code
« Enabling intraunit inlining

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 7 - 35

Introducing Intraunit Inlining

« Definition:
— Inlining is the replacement of a call to a subroutine with a
copy of the body of the subroutine that is called.
— The copied procedure generally runs faster than the original.
— The PL/SQL compiler can automatically find the calls that
should be inlined.
* Benefits:
— When applied judiciously, inlining can provide large
performance gains (by a factor of 2—10).

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Introducing Inlining

Procedure inlining is an optimization process that replaces procedure calls with a copy of the body of
the procedure to be called. The copied procedure almost always runs faster than the original call,
because:
* The need to create and initialize the stack frame for the called procedure is eliminated.
* The optimization can be applied over the combined text of the call context and the copied
procedure body.
» Propagation of constant actual arguments often causes the copied body to collapse under
optimization.

When inlining is achieved, you can see performance gains of 2—10 times.

With Oracle Database 11g, the PL/SQL compiler can automatically find calls that should be inlined,
and can do the inlining correctly and quickly. There are some controls to specify where and when the
compiler should do this work (using the PLSQL. OPTIMIZATION LEVEL database parameter),

but usually a general request is sufficient.

Oracle Database 11g: Advanced PL/SQL 7 - 36

Using Inlining

* Influence implementing inlining via two methods:
— Oracle parameter PLSQL_OPTIMIZE LEVEL
— PRAGMA INLINE
* Itis recommended that you:
— Inline small programs
— Inline programs that are frequently executed

« Use performance tools to identify the hotspots that are
suitable for inline applications:
— plstimer

&\\\

A

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using Inlining

When implementing inlining, it is recommended that the process be applied to smaller programs, and
programs that execute frequently. For example, you may want to inline small helper programs.

To help you identify which programs to inline, you can use the plst imer PL/SQL performance
tool. This tool specifically analyzes program performance in terms of the time spent in procedures
and the time spent on particular call sites. It is important that you identify the procedure calls that
may benefit from inlining.

There are two ways to use inlining:
1. Set the PLSQL OPTIMIZE LEVEL parameter to 3. When this parameter is set to 3, the
PL/SQL compiler searches for calls that might profit from inlining and inlines the most
profitable calls. Profitability is measured by those calls that help the program speed up the most

and keep the compiled object program as short as possible.
ALTER SESSION SET plsqgl optimize level = 3;

2. Use PRAGMA INLINE in your PL/SQL code. This identifies whether a specific call should be
inlined. Setting this pragma to “YES” has an effect only if the optimize level is set to two or
higher.

Oracle Database 11g: Advanced PL/SQL 7 - 37

Inlining Concepts

Noninlined program:

CREATE OR REPLACE PROCEDURE small pgm
IS

a NUMBER;

b NUMBER;

PROCEDURE touch(x IN OUT NUMBER, y NUMBER)
IS
BEGIN
IF y > 0 THEN
X := x*x;
END IF;
END;

a := b;
FOR I IN 1..10 LOOP
touch(a, -17);
a := a*b;
END LOOP;
END small pgm;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Inlining Concepts

The example shown in the slide will be expanded to show you how a procedure is inlined.

The a: =a*b assignment at the end of the loop looks like it could be moved before the loop;
however, it cannot, because a is passed as an IN OUT parameter to the TOUCH procedure. The
compiler cannot be certain what the procedure does to its parameters. This results in the
multiplication and in the assignment’s being completed 10 times instead of only once, even though
multiple executions are not necessary.

Oracle Database 11g: Advanced PL/SQL 7 - 38

Inlining Concepts

Examine the loop after inlining:

BEGIN

a := b;

FOR i IN 1..10 LOOP
IF -17 > 0 THEN

a := a*a;

END IF;
a := a*b;

END LOOP;

END small pgm;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Inlining Concepts (continued)
The code in the slide shows what happens to the loop after inlining.

Oracle Database 11g: Advanced PL/SQL 7 -39

Inlining Concepts

The loop is transformed in several steps:
a := b;
FOR i IN 1..10 LOOP ...

IF false THEN

a := a*a;

END IF;

a := a*b;
END LOOP;

a := b;

FOR i IN 1..10 LOOP ...
a := a*b;

END LOOP;

a := b;

a := a*b;

FOR i IN 1..10 LOOP ...
END LOOP;

a := b*b;
FOR i IN 1..10 LOOP ...
END LOOP;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Inlining Concepts (continued)

Because the insides of the procedure are now visible to the compiler, it can transform the loop in
several steps, as shown in the slide.

Instead of 11 assignments (one outside of the loop) and 10 multiplications, only one assignment and
one multiplication are performed. If the loop ran a million times (instead of 10), the savings would be
a million assignments. For code that contains deep loops that are executed frequently, inlining offers
tremendous savings.

Oracle Database 11g: Advanced PL/SQL 7 -40

Inlining: Example

« Setthe PLSQL OPTIMIZE LEVEL session-level
parameter to a value of 2 or 3:

ALTER PROCEDURE small pgm COMPILE
PLSQL OPTIMIZE LEVEL = 3 REUSE SETTINGS;

— Setting it to 2 means no automatic inlining is attempted.

— Setting it to 3 means automatic inlining is attempted but no
pragmas are necessary.

« Within a PL/SQL subroutine, use PRAGMA INLINE:

— NO means no inlining occurs regardless of the level and
regardless of the YES pragmas.

— YES means inline at level 2 of a particular call and increase
the priority of inlining at level 3 for the call.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Inlining Concepts (continued)

To influence the optimizer to use inlining, you can set the PLSQL. OPTIMIZE LEVEL parameter
to a value of 2 or 3. By setting this parameter, you are making a request that inlining be used. It is up
to the compiler to analyze the code and determine whether inlining is appropriate. When the optimize
level is set to 3, the PL/SQL compiler searches for calls that might profit from inlining and inlines
the most profitable calls.

In rare cases, if the overhead of the optimizer makes the compilation of very large applications take
too long, you can lower the optimization by setting PLSQL OPTIMIZE LEVEL=1 instead of its

default value of 2. In even rarer cases, you might see a change in exception action, either an
exception that is not raised at all, or one that is raised earlier than expected. Setting

PLSQL OPTIMIZE LEVEL=1 prevents the code from being rearranged.

To enable inlining within a PL/SQL subroutine, you can use PRAGMA INLINE to suggest that a
specific call be inlined.

Oracle Database 11g: Advanced PL/SQL 7 - 41

Inlining: Example

After setting the PLSQL. OPTIMIZE LEVEL parameter, use a
pragma:

CREATE OR REPLACE PROCEDURE small pgm
IS
a PLS INTEGER;
FUNCTION add it(a PLS INTEGER, b PLS INTEGER)
RETURN PLS INTEGER
IS
BEGIN
RETURN a + b;
END;
BEGIN
pragma INLINE (add it, 'YES');
a := add it(3, 4) + 6;
END small pgm;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Inlining Concepts (continued)
Within a PL/SQL subroutine, you can use PRAGMA INLINE to suggest that a specific call be
inlined. When using PRAGMA INLINE, the first argument is the simple name of a subroutine, a

function name, a procedure name, or a method name. The second argument is either the constant
string ‘NO’ or ‘YES.” The pragma can go before any statement or declaration. If you put it in the

wrong place, you receive a syntax error message from the compiler.

To identify that a specific call should not be inlined, use:

PRAGMA INLINE (function name, 'NO');
Setting the PRAGMA INLINE to ‘NO’ always works, regardless of any other pragmas that might also
apply to the same statement. The pragma also applies at all optimization levels, and it applies no
matter how badly the compiler would like to inline a particular call. If you are certain that you do not
want some code inlined (perhaps due to the large size), you can set this to NO.
Setting the PRAGMA INLINE to ‘YES’ strongly encourages the compiler to inline the call. The
compiler keeps track of the resources used during inlining and makes the decision to stop inlining
when the cost becomes too high.

If inlining is requested and you have the compiler warnings turned on, you see the message:
PLW-06004: inlining of call of procedure ADD IT requested.

If inlining is applied, you see the compiler warning (it is more of a message):
PLW-06005: inlining of call of procedure 'ADD IT' was done.

Oracle Database 11g: Advanced PL/SQL 7 -42

Inlining: Guidelines

« Pragmas apply only to calls in the next statement following
the pragma.

* Programs that make use of smaller helper subroutines are
good candidates for inlining.

* Only local subroutines can be inlined.
* You cannot inline an external subroutine.
* Inlining can increase the size of a unit.

« Be careful about suggesting to inline functions that are
deterministic.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Inlining: Guidelines

The compiler inlines code automatically, provided that you are using native compilation and have set
the PLSQL OPTIMIZE LEVEL to 3. If you have set PLSQL Warnings = 'enable:all',
using the SQL*Plus SHOW ERRORS command displays the name of the code that is inlined.
* The PLW-06004 compiler message tells you that a pragma INLINE ('YES') referring to
the named procedure was found. The compiler will, if possible, inline this call.
* The PLW-06005 compiler message tells you the name of the code that is inlined.

Alternatively, you can query the USER/ALL/DBA_ ERRORS dictionary view.

Deterministic functions compute the same outputs for the same inputs every time it is invoked, and
have no side effects. In Oracle Database 11g, the PL/SQL compiler can figure out whether a function
is deterministic; it may not find all that truly are, but it finds many of them. It never mistakes a
nondeterministic function for a deterministic function.

Oracle Database 11g: Advanced PL/SQL 7 -43

Quiz

Which of the following statements are true?
a. Use the native mode during development.

b. Because the native code does not have to be interpreted
at run time, it runs faster.

c. The interpreted compilation is the default compilation
method.

d. To change a compiled PL/SQL object from interpreted
code type to native code type, you must set the
PLSQL CODE_ TYPE parameter to NATIVE, and then

recompile the program

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: b, c, d

Oracle Database 11g: Advanced PL/SQL 7 - 44

Quiz

You can tune your PL/SQL code by:
a. Writing longer executable sections of code
b. Avoiding bulk binds
c. Using the FORALL support with bulk binding
d

Handling and saving exceptions with the SAVE
EXCEPTIONS syntax

e. Rephrasing conditional statements

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer:c, d, e

Oracle Database 11g: Advanced PL/SQL 7 -45

Quiz

Which of the following statements are true with reference to

inlining?
a. Pragmas apply only to calls in the next statement following
the pragma.

b. Programs that make use of smaller helper subroutines are
bad candidates for inlining.

c. Only local subroutines can be inlined.
d. You cannot inline an external subroutine.
Inlining can decrease the size of a unit.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: a, c, d

Oracle Database 11g: Advanced PL/SQL 7 - 46

Summary

In this lesson, you should have learned how to:

Decide when to use native or interpreted compilation
Tune your PL/SQL application. Tuning involves:

— Using the RETURNING clause and bulk binds

when appropriate

— Rephrasing conditional statements

— ldentifying data type and constraint issues

— Understanding when to use SQL and PL/SQL
Identify opportunities for inlining PL/QL code

Use native compilation for faster PL/SQL execution

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Summary

There are several methods that help you tune your PL/SQL application.

When tuning PL/SQL code, consider using the RETURNING clause and bulk binds to improve
processing. Be aware of conditional statements with an OR clause. Place the fastest processing
condition first. There are several data type and constraint issues that can help in tuning an
application.

By using native compilation, you can benefit from performance gains for computation-intensive
procedural operations.

Oracle Database 11g: Advanced PL/SQL 7 -47

Practice 7: Overview

This practice covers the following topics:
« Tuning PL/SQL code to improve performance
» Coding with bulk binds to improve performance

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Practice 7: Overview

In this practice, you tune some of the code that you created for the OE application.
» Break a previously built subroutine into smaller executable sections
* Pass collections into subroutines
* Add error handling for BULK INSERT

Use the OE schema for this practice.

For detailed instructions about performing this practice, see Appendix A, “Practice Solutions.”

Oracle Database 11g: Advanced PL/SQL 7 -48

Improving Performance with Caching

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

* Improve memory usage by caching SQL result sets
* Write queries that use the result cache hint
¢ Use the DBMS RESULT CACHE package

- Set up PL/SQL functions to use PL/SQL result caching

ORACLE’ 11 g

DATABASE

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

In this lesson, you learn about the Oracle Database 11g caching techniques that can improve
performance. You examine the improvement on the performance of queries by caching the results of
a query in memory, and then using the cached results in future executions of the query or query
fragments. The cached results reside in the result cache memory portion of the shared global area
(SGA).

The PL/SQL cross-section function result caching mechanism provides applications with a language-
supported and system-managed means for storing the results of PL/SQL functions in an SGA, which
is available to every session that runs the application.

Oracle Database 11g: Advanced PL/SQL 8 -2

Lesson Agenda

* Improving memory usage by caching SQL result sets
— Enabling the query result cache
— Using the DBMS RESULT CACHE package
* Implementing SQL query result caching
— Writing queries that use the result cache hint
« Using PL/SQL function result caching
— Setting up PL/SQL functions to use PL/SQL result caching
— Implementing PL/SQL function result caching

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 8 -3

What Is Result Caching?

« The result cache allows SQL query and PL/SQL function
results to be stored in cache memory.

* Subsequent executions of the same query or function can
be served directly out of the cache, improving response
times.

« This technique can be especially effective for SQL queries
and PL/SQL functions that are executed frequently.

« Cached query results become invalid when the database
data accessed by the query is modified.

SGA Shared pool

Library Result
cache cache

Data dictionary)|
cache

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

What Is Result Caching?

The new SQL query result cache enables explicit caching of queries and query fragments in an area
of the shared pool called “result cache memory.” When a query is executed, the result cache is built
up and the result is returned. The database can then use the cached results for subsequent query
executions, thereby resulting in faster response times. Cached query results become invalid when the
data in the database objects being accessed by the query are modified.

Oracle Database 11g: Advanced PL/SQL 8 -4

Increasing Result Cache Memory Size

* You can increase the small, default result cache memory
size by using the RESULT CACHE MAX SIZE initialization

parameter.
SGA
Shared pool
Default
result
cache
- == /
--" ’
- ¢’
Increased
result
cache

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Increasing Result Cache Memory Size

By default, on database startup, Oracle allocates memory to the result cache in the shared pool. The
memory size allocated depends on the memory size of the shared pool as well as the memory
management system.
* When using the MEMORY TARGET initialization parameter to specify the memory allocation,
Oracle allocates 0.25% of the memory target to the result cache.
* When you set the size of the shared pool using the SGA TARGET initialization parameter,
Oracle allocates 0.5% of the SGA target to the result cache.
 Ifyou specify the size of the shared pool using the SHARED POOL_SIZE initialization
parameter, Oracle allocates 1% of the shared pool size to the result cache.

Note: Oracle will not allocate more than 75% of the shared pool to the result cache.

Use the RESULT CACHE MAX RESULT initialization parameter to specify the maximum
percentage of result cache memory that can be used by any single result. The default value is 5%, but
you can specify any value between 1% and 100%.

Oracle Database 11g: Advanced PL/SQL 8 -5

Setting Result Cache Max Size

* SetResult Cache Max Size from the command line or
in an initialization file created by a DBA.

« The cache size is dynamic and can be changed either
permanently or until the instance is restarted.

SQL> ALTER SYSTEM SET result cache max size = 2M SCOPE =
MEMORY ;

System altered.

SQL> SELECT name, value
2 FROM v$parameter

3 WHERE name = 'result cache max size';
NAME VALUE
result cache max size 2097152

1l row selected.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Setting Result Cache Max Size

By default, the server-side result cache is configured to use a very small portion of the shared pool.
You can manually set the result cache memory size by using the RESULT CACHE MAX SIZE
initialization parameter. Setting RESULT CACHE MAX SIZE to 0 during database startup disables
the server-side result cache. RESULT CACHE MAX SIZE cannot be dynamically changed if the
value is set to 0 during database startup in the SPFILE (sever parameter file) or the init.ora
(initialization) file.

Oracle Database 11g: Advanced PL/SQL 8 -6

Enabling Query Result Cache

* Use the RESULT CACHE MODE initialization parameter in
the database initialization parameter file.
 RESULT CACHE MODE can be set to:
— MANUAL (default): You must add the RESULT CACHE hint to
your queries for the results to be cached.

— FORCE: Results are always stored in the result cache
memory, if possible.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Enabling Query Result Cache

You can enable query result cache at the database level by using the RESULT CACHE MODE
initialization parameter in the database initialization parameter file. The same parameter can also be
used at the session level by using the ALTER SESSION command. RESULT CACHE MODE can be
set to:

e MANUAL (default): You must add the RESULT CACHE hint to your queries for the results to be
cached or to be served out of the cache. The RESULT CACHE hint can also be added in
subqueries and inline views.

e FORCE: Results are always stored in the result cache memory, if possible.

The use of the SQL query result cache introduces the ResultCache operator in the query
execution plan.

Oracle Database 11g: Advanced PL/SQL 8 -7

Using the DBMS RESULT CACHE Package

« The DBMS RESULT CACHE package provides an interface
for a DBA to manage memory allocation for SQL query
result cache and the PL/SQL function result cache.

execute dbms result cache.memory report

Result Cache Memory Report
[Parameters]

Block Size
Maximum Cache Size

1K bytes
1792K bytes (1792 blocks)
89K bytes (89 blocks)

Maximum Result Size

[Memory]

Total Memory = 9440 bytes [0.004% of the Shared Pooll]
. Fixed Memory = 9440 bytes [0.004% of the Shared Pool]
. Dynamic Memory = 0 bytes [0.000% of the Shared Pool]

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Using the DBMS RESULT CACHE Package

You can use the DBMS RESULT CACHE package to perform various operations such as bypassing

the cache, retrieving statistics on the cache memory usage, and flushing the cache. For example, to
view the memory allocation statistics, use dbms result cache.memory report. The output

of this command is similar to the following:

Result Cache Memory Report

[Parameters]

Block Size 1K bytes

Maximum Cache Size 1056K bytes (1056 blocks)

Maximum Result Size = 52K bytes (52 blocks)

[Memory]

Total Memory = 5140 bytes [0.003% of the Shared Pool]
Fixed Memory = 5140 bytes [0.003% of the Shared Pool]
Dynamic Memory = 0 bytes [0.000% of the Shared Pool]

Oracle Database 11g: Advanced PL/SQL 8 -8

Lesson Agenda

* Improving memory usage by caching SQL result sets
— Enabling the query result cache
— Using the DBMS RESULT CACHE package
* Implementing SQL query result caching
— Writing queries that use the result cache hint
« Using PL/SQL function result caching
— Setting up PL/SQL functions to use PL/SQL result caching
— Implementing PL/SQL function result caching

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

An example of setting the result cache hint is provided on the next few pages.

Oracle Database 11g: Advanced PL/SQL 8 -9

SQL Query Result Cache

« Definition:
— Cache the results of the current query or query fragment in

memory, and then use the cached results in future
executions of the query or query fragments.

— Cached results reside in the result cache memory portion of
the SGA.

« Benefits:
— Improved performance

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

SQL Query Result Cache

You can improve the performance of your queries by caching the results of a query in memory, and
then using the cached results in future executions of the query or query fragments. The cached results
reside in the result cache memory portion of the SGA. This feature is designed to speed up query
execution on systems with large memories.

Oracle Database 11g: Advanced PL/SQL 8 -10

SQL Query Result Cache

 Scenario:

— You need to find the greatest average value of credit limit
grouped by state over the whole population.

— The query returns a large number of rows being analyzed to
yield a few or one row.

— In your query, the data changes fairly slowly (say every hour)
but the query is repeated fairly often (say every second).
* Solution:
— Use the new optimizer hint /*+ result cache */inyour
query:
SELECT /*+ result cache */
AVG (cust credit limit), cust state province

FROM sh.customers
GROUP BY cust state province;

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Usage

SQL result caching is useful when your queries need to analyze a large number of rows to return a
small number of rows or a single row.

Two new optimizer hints are available to turn on and turn off SQL result caching:
/*+ result cache */
/*+ no_result cache */

These hints enable you to override the settings of the RESULT CACHE_MODE initialization
parameter.

You can execute DBMS RESULT CACHE.MEMORY REPORT to produce a memory usage report of
the result cache.

Oracle Database 11g: Advanced PL/SQL 8 - 11

Clearing the Shared Pool and Result Cache

--- flush.sql

--- Start with a clean slate. Flush the cache and shared pool.
--- Verify that memory was released.

SET ECHO ON

SET FEEDBACK 1

SET SERVEROUTPUT ON

execute dbms result cache.flush
alter system flush shared pool

/

execute dbms result cache.memory report

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Clearing the Shared Pool and Result Cache

To understand the use of query result cache, ensure that you are using clean, new data. Connect to the
database as SYS.

Clear the shared pool and the result cache by executing the code shown in the slide.

Oracle Database 11g: Advanced PL/SQL 8 -12

Examining the Memory Cache

--- flush.sql

--- Start with a clean slate. Flush the cache and shared pool.
--- Verify that memory was released.

SET ECHO ON

SET FEEDBACK 1

SET SERVEROUTPUT ON

execute dbms result cache.flush
alter system flush shared pool

execute dbms result cache.memory report

v
Result Cache Memory Report
[Parameters]
Block Size

1K bytes
Maximum Cache Size 1792K bytes (1792 blocks)
Maximum Result Size = 89K bytes (89 blocks)

[Memory]

Total Memory = 9440 bytes [0.004% of the Shared Pool]

... Fixed Memory = 9440 bytes [0.004% of the Shared Pooll]
... Dynamic Memory = 0 bytes [0.000% of the Shared Pooll]

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Examining the Memory Cache

Examine the memory cache by executing the code shown in the slide. Cache memory is 0 bytes,
because nothing has yet been cached.

Oracle Database 11g: Advanced PL/SQL 8 -13

Examining the Execution Plan for a Query
The optimizer hint places the query in

--- plan queryl.sql the result cache.
--- Generate the execution plan.

--- (The query name Q1 is optional)

explain n for
select |/*+ result cache g name(Ql) */ *|from orders;

--- Display the execution plan.
select plan table outpu rom
table (dbms xplan.display('plan table',null, 'serial'));

Verify that the query result

) is placed in the result
explain plan succeeded.
PLAN TABLE OUTPUT cache.

Plan hash value: 1275100350

| Id | Operation | Name | Rows |]|Bytes | Cost (%CPU)| Time |
0 SELECT STATEMENT 80 2960 3 (0)| 00:00:01
1 RESULT CACHE 979kh5kqgt. ..
2 TABLE ACCESS FULL| ORDERS 80 2960 3 (0) 00:00:01

Result Cache Information (identified by operation iq&:

1 -| column-count=8; dependencies=(OE.ORDERS); name="select /*+ result cache g name (Q1)
*/ * from orders"

14 rows selected

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Examining the Execution Plan for a Query

You examine the execution plan for two queries, and then execute both queries. After executing both
queries, you view the memory allocation and usage statistics.

First, execute the code shown in the slide and examine the execution plan for the first query. The
query uses the RESULT CACHE optimizer hint.

Oracle Database 11g: Advanced PL/SQL 8 -14

Examining Another Execution Plan

--- plan query2.sql
set echo on
--- Generate the execution plan. (The query name Q2 is optiomnal)
explain plan for
select c.customer id, o.ord count
from (select /*+ result cache g name(Q2) */
customer id, count(*) ord count
from orders
group by customer id) o, customers c
where o.customer id = c.customer id;

--- Display the execution plan.
--- using the code in ORACLE HOME/rdbms/admin/utlxpls

select plan table output from table(dbms xplan.display('plan_ table',
null, 'serial'));

Result Cache Information (identified by operation id):

3 - column-count=2; dependencies=(OE.ORDERS); name="select /*+ result cache g name(Q2) */
customer id, count(*) ord count
from orders
group by customer id"

25 rows selected

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Examining Another Execution Plan

Execute the code shown in the slide and examine the execution plan for the second query. This query
also uses the RESULT CACHE optimizer hint.
--- Generate the execution plan. (The query name Q2 is optional)
explain plan for
select c.customer id, o.ord count
from (select /*+ result cache g name(Q2) */
customer id, count (*) ord count
from orders
group by customer id) o, customers c
where o.customer id = c.customer id
explain plan succeeded.
PLAN TABLE OUTPUT

Plan hash value: 2892511806

| 0 | SELECT STATEMENT | | 37
| 1110 | 1 (0)] 00:00:01 |

Oracle Database 11g: Advanced PL/SQL 8 -15

Examining Another Execution Plan (continued)

| 1 | NESTED LOOPS | | 37
| 1110 | 1 (0)] 00:00:01 |

|* 2 | VIEW | | 37
| 962 | 1 (0)] 00:00:01 |

| 3 | RESULT CACHE | 3x0x88r47u2jga7fzz398g0xls |

| | | |

| 4 | HASH GROUP BY | | 37
| 148 | 1 (0)] 00:00:01 |

| 5 | INDEX FULL SCAN| ORD CUSTOMER IX | 80
| 320 | 1 (0)] 00:00:01 |

|* 6 | INDEX UNIQUE SCAN | CUSTOMERS PK | 1
| 4 | 0 (0)] 00:00:01 |

Predicate Information (identified by operation id):

2 - filter ("O"."CUSTOMER ID">0)
6 - access("O"."CUSTOMER_ ID"="C"."CUSTOMER ID")
filter("C"."CUSTOMER ID">0)

Result Cache Information (identified by operation id) :

3 - column-count=2; dependencies=(OE.ORDERS); name="select /*+
result cache g name (Q2) */
customer id, count (*) ord count
from orders
group by customer id"

25 rows selected

Oracle Database 11g: Advanced PL/SQL 8 -16

Executing Both Queries

--- query3.sql
--- Cache result of both queries, then use the cached result.
Set timing on
set echo on
select /*+ result cache g name(Ql) */ * from orders;
select c.customer id, o.ord count
from (select /*+ result cache g name(Q3) */
customer id, count(*) ord count
from orders
group by customer id) o, customers c
where o.customer id = c.customer id;

2452 07-0CT-07 02.59.43.462632000 AM direct 149 5 12589 159
2457 01-NOV-07 05.22.16.162632000 AM direct 118 5 21586.2 159
80 rows selected

|81ms elapsed |

select c.customer id, o.ord count
from (select /*+ result cache g name(Q3) */
customer id, count(*) ord count
from orders
group by customer id) o, customers c
where o.customer id = c.customer id

CUSTOMER_ID ORD COUNT
123 1
151 i

|23ms elapsed]

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Executing Both Queries

You have examined the execution plan for both queries. Now execute both queries by executing the
code shown in the slide.

Oracle Database 11g: Advanced PL/SQL 8 -17

Viewing Cache Results Created

col name format a55
select * from vsresult cache statistics

/
D[§ nmamE @ wvaLue
1 Block Size (Bytes) 1024
2 Block Count Maximum 1792
3 Block Count Current 32

4 Result Size Maximum (Blocks) 89

= Create Court Success 5 <«—— Number of cache results
successfully created

& Create Count Failure
7 Find Count

8 Invalidation Count

9 Delete Count Invalid
10 Delete Count Valid
11 Hash Chain Length

= o o O O O

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Viewing Cache Results Created

The next step is to run a query against VSRESULT CACHE STATISTICS to view the memory
allocation and usage statistics. You can view the memory allocation by executing the code as shown
in the slide.

Note that the CREATE COUNT SUCCESS column has a value of 2, which is the number of cache
results that were successfully created (one for each query statement).

In the next steps, you re-execute the queries and view the cache results found.

Oracle Database 11g: Advanced PL/SQL 8 -18

Re-Executing Both Queries

--- query3.sql

--- Cache result of both queries, then use the cached result.
set echo on

select /*+ result cache g name(Ql) */ * from orders

select c.customer id, o.ord count
from (select /*+ result cache g name(Q3) */
customer_id, count(*) ord count
from orders
group by customer id) o, customers c
where o.customer id = c.customer id

2452 07-OCT-07 02.59.43.462632000 AM direct 149 5 12589 159
2457 01-NOV-07 05.22.16.162632000 AM direct 118 5 21586.2 159
80 rows selected
|46ms elapsed | <
select c.customer id, o.ord count
from (select /*+ result cache g name(Q3) */
customer. id, count(#) ord Gount Note that the query runs faster
from orders : after caching. (Earlier timings
group by customer id) o, customers c
where o.customer id = c.customer id were 81ms and 23 ms_)
CUSTOMER_ID ORD COUNT
123 1
151 1

|8ms elagsed N

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Re-Executing Both Queries
Execute both queries shown in the slide.

Note that the query runs faster after caching.

Oracle Database 11g: Advanced PL/SQL 8 -19

Viewing Cache Results Found

col name format a55
select * from vsresult cache statistics

/
D[f namE B vaLue
1 Block Size (Bytes) 1024
2 Block Count Maximum 1792
3 Block Count Current 32
4 Result Size Maximum (Elocks) 89
5 Create Count Success 2

& Create Count Failure
7 Find Count

Number of cache results
successfully found

8 Invalidation Count

9 Delete Count Invalid
10 Delete Count Valid
11 Hash Chain Length

B o o oINS

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Viewing Cache Results Found
Query VSRESULT CACHE STATISTICS again to view memory allocation and usage statistics.
Do this by again executing the code shown in the slide.

Note that the FIND COUNT column now has a value of 2. This is the number of cache results that
were successfully found (one for each query statement).

Oracle Database 11g: Advanced PL/SQL 8 - 20

Lesson Agenda

* Improving memory usage by caching SQL result sets
— Enabling the query result cache
— Using the DBMS RESULT CACHE package
* Implementing SQL query result caching
— Writing queries that use the result cache hint
« Using PL/SQL function result caching
— Setting up PL/SQL functions to use PL/SQL result caching
— Implementing PL/SQL function result caching

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 8 - 21

PL/SQL Function Result Cache

* Definition:
— Enables data that is stored in cache to be shared across
sessions

— Stores the function result cache in an SGA, making it
available to any session that runs your application

* Benefits:
— Improved performance
— Improved scalability

b
o
=

.o
|

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

PL/SQL Function Result Cache

Starting in Oracle Database 11g, you can use the PL/SQL cross-section function result caching
mechanism. This caching mechanism provides you with a language-supported and system-managed
means for storing the results of PL/SQL functions in an SGA, which is available to every session that
runs your application. The caching mechanism is both efficient and easy to use, and it relieves you of
the burden of designing and developing your own caches and cache-management policies.

Oracle Database 11g: Advanced PL/SQL 8 - 22

Marking PL/SQL Function Results to Be Cached

« Scenario:
— You need a PL/SQL function that derives a complex metric.

— The data that your function calculates changes slowly, but
the function is frequently called.

« Solution:
— Use the new RESULT CACHE clause in your function
definition.

— You can also have the cache purged when a dependent
table experiences a DML operation, by using the
RELIES_ON clause.

7 - R

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Marking PL/SQL Function Results to Be Cached
To enable result caching for a function, use the RESULT CACHE clause in your PL/SQL function.
Using this clause results in the following:

 If a result-cached function is called, the system checks the cache.

» If the cache contains the result from a previous call to the function with the same parameter
values, the system returns the cached result to the caller and does not re-execute the function
body.

« If the cache does not contain the result, the system executes the function body and adds the
result (for these parameter values) to the cache before returning control to the caller.

L

The cache can accumulate many results—one result for every unique combination of parameter
values with which each result-cached function was called. If the system needs more memory, it ages
out (deletes) one or more cached results.

You can specify the database objects that are used to compute a cached result, so that if any of them
1s updated, the cached result becomes invalid and must be recomputed.

The best candidates for result caching are functions that are called frequently but depend on
information that changes infrequently or never.

Oracle Database 11g: Advanced PL/SQL 8 - 23

Clearing the Shared Pool and Result Cache

--- flush.sql

--- Start with a clean slate. Flush the cache and shared pool.
--- Verify that memory was released.

SET ECHO ON

SET FEEDBACK 1

SET SERVEROUTPUT ON

execute dbms result cache.flush
alter system flush shared pool

execute dbms result cache.memory report

Result Cache Memory Report

[Parameters]
Block Size = 1K bytes
Maximum Cache Size = 1056K bytes (1056 blocks)

Maximum Result Size
[Memory]

Total Memory = 5140 bytes [0.003% of the Shared Pool]

... Fixed Memory = 5140 bytes [0.003% of the Shared Pooll]
... Dynamic Memory = 0 bytes [0.000% of the Shared Pool]

52K bytes (52 blocks)

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Clearing the Shared Pool and Result Cache

To understand the use of PL/SQL function result caching, clear the shared pool and the result cache
again by performing the steps shown in the slide.

Oracle Database 11g: Advanced PL/SQL 8 - 24

Lesson Agenda

* Improving memory usage by caching SQL result sets
— Enabling the query result cache
— Using the DBMS RESULT CACHE package
* Implementing SQL query result caching
— Writing queries that use the result cache hint
« Using PL/SQL function result caching
— Setting up PL/SQL functions to use PL/SQL result caching
— Implementing PL/SQL function result caching

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 8 - 25

Creating a PL/SQL Function Using the
RESULT CACHE Clause

* Include the RESULT CACHE option in the function
definition.
« Optionally, include the RELIES ON clause.

CREATE OR REPLACE FUNCTION ORD COUNT (cust no number)
BE
|RESULT_CACHE RELIES ON (orders)
1S A A
V_COUNT NUMBER;
BEGIN
SELECT |COUNT (*) INTO Y COUNT
FROM orlders
WHERE dustomer id = cyst no;

return [v_count;

end;
Specifies that the result Specifies the table upon which
should be cached the function relies

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Creating a PL/SQL Function Using the RESULT CACHE Clause
When writing code for the PL/SQL result cache option, you need to:
* Include the RESULT CACHE option in the function declaration section of a package
* Include the RESULT CACHE option in the function definition
* Optionally include the RELIES _ON clause to specify tables or views on which the function
results depend
In the example shown in the slide, the ORD COUNT function has result caching enabled through the
RESULT CACHE option in the function declaration. In this example, the RELIES ON clause is used
to identify the ORDERS table on which the function results depend.
You can also run DBMS_RESULT CACHE.MEMORY REPORT to view the result cache memory
results.
For more information about result caching in Oracle Database 11g, review the Oracle by Example

tutorial, which is available at:
http://stcontent.oracle.com/content/dav/oracle/Libraries/ST%20Curriculum/ST%20Curriculum-

Public/Courses/OBE/11gr1 _db/manage/res_cache/results cache.htm

Oracle Database 11g: Advanced PL/SQL 8 - 26

Lesson Agenda

* Improving memory usage by caching SQL result sets
— Enabling the query result cache
— Using the DBMS RESULT CACHE package
* Implementing SQL query result caching
— Writing queries that use the result cache hint
« Using PL/SQL function result caching
— Setting up PL/SQL functions to use PL/SQL result caching
— Implementing PL/SQL function result caching

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Advanced PL/SQL 8 - 27

Calling the PL/SQL Function Inside a Query

select cust last name, |ord count (customer id) |[no of orders
from customers
where cust last name = 'MacGraw'

cusT_LasT_NaME|[] NO_OF_ORDERS |
MacCraw 3

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Calling the PL/SQL Function Inside a Query
Call the ORD COUNT PL/SQL function inside a query by performing the query shown in the slide.

Oracle Database 11g: Advanced PL/SQL 8 - 28

Verifying Memory Allocation

--- Establish the cache content
set serveroutput on
execute dbms result cache.memory report

ananymous hlock completed
Result Cache Memory RKeport
[Farameters]
Block Size
Maximum Cache Size
Maximum Result Size
[Memory]
Total Memory = 107836 bytes [0.050% of the Shared Pool]

. Fixed Memory = 9440 hytes [0.004% of the Shared Poaol]

. Dyvnamic Memory = 98396 hytes [0.046% of the Shared Pool]
....... Overhead = 5628 hytes
....... Cache Memory = 32K hytes ({32 hlocks)
........... Unused Memory = 29 hlocks
........... Used Memory = 3 hlocks
............... Dependencies = 2 hlocks (2 count)
............... Fesults = 1 hlocks
............... ... PL30L =1 hlocks (1 count)

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Verifying Memory Allocation
To verify that memory was allocated, execute dbms result cache.memory report as
shown in the slide to view the memory allocation statistics.

1K hytes
1792K hwtes (1792 hlocks)
29K bytes (B9 hlocks)

Oracle Database 11g: Advanced PL/SQL 8 - 29

Viewing Cache Results Created

col name format ab5
select * from vsresult cache statistics

/
B [d name g vaLue
1 Elock Size (Bytes) 1024
2 Block Count Maximum 17392
3 Block Count Current 32

4 Result Size Maximum (Blocks) 89

5 Create Count Success 1 |

6 Create Count Failure

7 Find Count

8 Invalidation Count

9 Delete Count Invalid
10 Delete Count Valid
11 Hash Chain Length

= o o O = O

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Viewing Cache Results Created
The next step is to query VSRESULT CACHE STATISTICS to view the memory allocation and
usage statistics. Do this by performing the steps shown in the slide.

Note that the CREATE COUNT SUCCESS column has a value of 1. This is the number of cache
results that were successfully created (one for each query statement).

Oracle Database 11g: Advanced PL/SQL 8 - 30

Calling the PL/SQL Function Again

select cust last name, [ord count (customer id) |[no of orders
from customers
where cust last name = 'MacGraw'

CuST_LAST_NAME|[] NO_OF_ORDERS |
MacCraw 3

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Calling the PL/SQL Function Again

Run the query again, as shown in the slide.

Oracle Database 11g: Advanced PL/SQL 8 - 31

Viewing Cache Results Found

col name format ab5
select * from vsresult cache statistics

/
D |J NaAME @ vaLue
1 Block Size (Bytes) 1024
2 Block Count Maximum 1782
3 Block Count Current 32

4 Result Size Maximum (Blocks) 89
5 Create Count Success 1
6 Create Count Failure
7 Find Count

& Invalidation Count

9 Delete Count Invalid
10 Delete Count Valid
11 Hash Chain Length

= o O O =] o

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Viewing Cache Results Found
Query VSRESULT CACHE STATISTICS again to view the memory allocation and usage
statistics. Do this by performing the steps shown in the slide.
Note that the FIND COUNT column now has a value of 1. This is the number of cache results that
were successfully found (one for each query statement).

Oracle Database 11g: Advanced PL/SQL 8 - 32

Confirming That the Cached Result Was Used

select type, namespace,status, scan count,name
from vSresult cache objects

/

TYPE | MAMESPACE g STATUSl SCAN_COUNT' MAME

Dependency (null Published 0 DE.ORDERS

Dependency (null) Published 0 QEQORD_COUNT

Result PLSOL Published 'OE'."ORD_COUN'I'"::B."ORD_COUN'I"'#facBBZc?BG?bS4c6#1

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Confirming That the Cached Result Was Used

Query VSRESULT CACHE OBJECTS to confirm that the cached result was used. Do this by
performing the steps shown in the slide.

Oracle Database 11g: Advanced PL/SQL 8 - 33

Quiz

Which of the following statements are true?

a. When a query is executed, the result cache is built up in
the result cache memory.

b. Subsequent executions of the same query or function can
be served directly out of the cache, improving response
times.

c. This technique should not be used for SQL queries and
PL/SQL functions that are executed frequently.

d. Cached query results remains valid even after the
database data accessed by the query is modified.

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: a, b

Oracle Database 11g: Advanced PL/SQL 8 - 34

Quiz

You can set the RESULT CACHE MODE to FORCE, at the
session level by using the ALTER SESSION command, so that

the results of all the queries are always stored in the result
cache memory.

a. True
b. False

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: a

Oracle Database 11g: Advanced PL/SQL 8 - 35

Quiz

You can use the DBMS RESULT CACHE package to:
Bypass the cache

Retrieve statistics on the cache memory usage
Flush the cache

None of the above

Qoo o

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: a, b, c

Oracle Database 11g: Advanced PL/SQL 8 - 36

Quiz

On querying VSRESULT CACHE STATISTICS to view the
memory allocation and usage statistics, the number of cache
results successfully found is denoted by:

a. The CREATE COUNT SUCCESS column
b. The FIND COUNT column

c. The INVALIDATION COUNT column
d. The HASH CHAIN LENGTH column

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Answer: b

Oracle Database 11g: Advanced PL/SQL 8 - 37

Summary

In this lesson, you should have learned how to:

* Improve memory usage by caching SQL result sets

* Write queries that use the result cache hint

* Use the DBMS RESULT CACHE package

« Set up PL/SQL functions to use PL/SQL result caching

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Summary
In this lesson, you saw the Oracle Database 11g caching techniques that can improve performance.

Oracle Database 11g: Advanced PL/SQL 8 - 38

Practice 8: Overview

This practice covers the following topics:
* Writing code to use SQL caching
« Writing code to use PL/SQL caching

Copyright @ 2010, Oracle and/or its affiliates. All rights reserved.

Practice 8: Overview

In this practice, you implement SQL query result caching and PL/SQL result function caching. You
run scripts to measure the cache memory values, manipulate queries and functions to turn caching on
and off, and then examine cache statistics. This practice uses the OE schema.

Oracle Database 11g: Advanced PL/SQL 8 -39

	Cover Page

	Table of Contents

	Preface
	Lesson 1: Introduction
	Course Objectives
	Lesson Agenda
	Course Agenda
	Appendixes Used in This Course
	Lesson Agenda
	Development Environments: Overview
	What Is Oracle SQL Developer?
	Coding PL/SQL in SQL*Plus
	Lesson Agenda
	Tables Used in This Course
	The Order Entry Schema
	The Human Resources Schema
	Oracle 11g SQL and PL/SQL Documentation
	Summary
	Practice 1 Overview: Getting Started

	Lesson 2: PL/SQL Programming Concepts: Review
	Objectives
	Lesson Agenda
	PL/SQL Block Structure
	Naming Conventions
	Procedures
	Procedure: Example
	Stored
 Functions
	Function: Example
	Ways to Execute Functions
	Lesson Agenda
	Restrictions on Calling Functions from SQL Expressions
	Lesson Agenda
	PL/SQL Packages: Review
	Components of a PL/SQL Package
	Creating the Package Specification
	Creating the Package Body
	Lesson Agenda
	Cursor
	Processing Explicit Cursors
	Explicit Cursor Attributes
	Cursor FOR Loops
	Cursor: Example
	Lesson Agenda
	Handling Exceptions
	Exceptions: Example
	Predefined Oracle Server Errors
	Trapping Non-Predefined Oracle Server Errors
	Trapping User-Defined Exceptions
	Lesson Agenda
	The RAISE_APPLICATION_ERROR Procedure
	Lesson Agenda
	Dependencies
	Displaying Direct and Indirect Dependencies
	Lesson Agenda
	Using Oracle-Supplied Packages
	Some of the Oracle-Supplied Packages
	DBMS_OUTPUT Package
	UTL_FILE Package
	Summary
	Practice 2: Overview

	Lesson 3: Designing PL/SQL Code
	Objectives
	Lesson Agenda
	Guidelines for Cursor Design
	Lesson Agenda
	Cursor Variables: Overview
	Working with Cursor Variables
	Strong Versus Weak REF CURSOR Variables
	Step 1: Defining a REF CURSOR Type
	Step 1: Declaring a Cursor Variable
	Step 1: Declaring a REF CURSOR Return Type
	Step 2: Opening a Cursor Variable
	Step 3: Fetching from a Cursor Variable
	Step 4: Closing a Cursor Variable
	Passing Cursor Variables as Arguments
	Using the SYS_REFCURSOR Predefined Type
	Rules for Cursor Variables
	Comparing Cursor Variables with Static Cursors
	Lesson Agenda
	Predefined PL/SQL Data Types
	Subtypes: Overview
	Benefits of Subtypes
	Declaring Subtypes
	Using Subtypes
	Subtype Compatibility
	Quiz
	Summary
	Practice 3: Overview

	Lesson 4: Working with Collections
	Objectives
	Lesson Agenda
	Understanding Collections
	Collection Types
	Lesson Agenda
	Using Associative Arrays
	Creating the Array
	Traversing the Array
	Lesson Agenda
	Using Nested Tables
	Nested Table Storage
	Creating Nested Tables
	Declaring Collections: Nested Table
	Using Nested Tables
	Using Nested Tables
	Referencing Collection Elements
	Using Nested Tables in PL/SQL
	Lesson Agenda
	Understanding Varrays
	Declaring Collections: Varray
	Using Varrays
	Lesson Agenda
	Working with Collections in PL/SQL
	Initializing Collections
	Referencing Collection Elements
	Using Collection Methods
	Manipulating Individual Elements
	Lesson Agenda
	Avoiding Collection Exceptions
	Avoiding Collection Exceptions: Example
	Lesson Agenda
	Listing Characteristics for Collections
	Guidelines for Using Collections Effectively
	Quiz
	Summary
	Practice 4: Overview

	Lesson 5: Manipulating Large Objects
	Objectives
	Lesson Agenda
	What Is a LOB?
	Components of a LOB
	Internal LOBs
	Managing Internal LOBs
	Lesson Agenda
	What Are BFILEs?
	Securing BFILEs
	What Is a DIRECTORY?
	Using the DBMS_LOB Package
	DBMS_LOB.READ and DBMS_LOB.WRITE
	Managing BFILEs
	Preparing to Use BFILEs
	Populating BFILE Columns with SQL
	Populating a BFILE Column with PL/SQL
	Using DBMS_LOB Routines with BFILEs
	Lesson Agenda
	Initializing LOB Columns Added to a Table
	Populating LOB Columns
	Writing Data to a LOB
	Reading LOBs from the Table
	Updating LOB by Using DBMS_LOB in PL/SQL
	Checking the Space Usage of a LOB Table
	Selecting CLOB Values by Using SQL
	Selecting CLOB Values by Using DBMS_LOB
	Selecting CLOB Values in PL/SQL
	Removing LOBs
	Quiz
	Lesson Agenda
	Temporary LOBs
	Creating a Temporary LOB
	Lesson Agenda
	SecureFile LOBs
	Storage of SecureFile LOBs
	Creating a SecureFile LOB
	Comparing Performance
	Enabling Deduplication and Compression
	Enabling Deduplication and Compression: Example
	Step 1: Checking Space Usage
	Step 2: Enabling Deduplication and Compression
	Step 3: Rechecking LOB Space Usage
	Step 4: Reclaiming the Free Space
	Using Encryption
	Using Encryption: Example
	Migrating from BasicFile to SecureFile Format
	Quiz
	Summary
	Practice 5: Overview

	Lesson 6: Using Advanced Interface Methods
	Objectives
	Calling External Procedures from PL/SQL
	Benefits of External Procedures
	External C Procedure Components
	How PL/SQL Calls a C External Procedure
	The extproc Process
	Development Steps for External C Procedures
	The Call Specification
	Publishing an External C Routine
	Executing the External Procedure
	Java: Overview
	Calling a Java Class Method by Using PL/SQL
	Development Steps for Java Class Methods
	Loading Java Class Methods
	Publishing a Java Class Method
	Executing the Java Routine
	Creating Packages for Java Class Methods
	Quiz
	Summary
	Practice 6: Overview

	Lesson 7: Performance and Tuning
	Objectives
	Lesson Agenda
	Native and Interpreted Compilation
	Deciding on a Compilation Method
	Setting the Compilation Method
	Viewing the Compilation Settings
	Setting Up a Database for Native Compilation
	Compiling a Program Unit for Native Compilation
	Lesson Agenda
	Tuning PL/SQL Code
	Avoiding Implicit Data Type Conversion
	Understanding the NOT NULL Constraint
	Using the PLS_INTEGER Data Type for Integers
	Using the SIMPLE_INTEGER Data Type
	Modularizing Your Code
	Comparing SQL with PL/SQL
	Using Bulk Binding
	Using SAVE EXCEPTIONS
	Handling FORALL Exceptions
	Rephrasing Conditional Control Statements
	Passing Data Between PL/SQL Programs
	Lesson Agenda
	Introducing Intraunit Inlining
	Using Inlining
	Inlining Concepts
	Inlining: Example
	Inlining: Guidelines
	Quiz
	Summary
	Practice 7: Overview

	Lesson 8: Improving Performance with Caching
	Objectives
	Lesson Agenda
	What Is Result Caching?
	Increasing Result Cache Memory Size
	Setting Result_Cache_Max_Size
	Enabling Query Result Cache
	Using the DBMS_RESULT_CACHE Package
	Lesson Agenda
	SQL Query Result Cache
	Clearing the Shared Pool and Result Cache
	Examining the Memory Cache
	Examining the Execution Plan for a Query
	Examining Another Execution Plan
	Executing Both Queries
	Viewing Cache Results Created
	Re-Executing Both Queries
	Viewing Cache Results Found
	Lesson Agenda
	PL/SQL Function Result Cache
	Marking PL/SQL Function Results to Be Cached
	Clearing the Shared Pool and Result Cache
	Lesson Agenda
	Creating a PL/SQL Function Using the RESULT_CACHE Clause
	Lesson Agenda
	Calling the PL/SQL Function Inside a Query
	Verifying Memory Allocation
	Viewing Cache Results Created
	Calling the PL/SQL Function Again
	Viewing Cache Results Found
	Confirming That the Cached Result Was Used
	Quiz
	Summary
	Practice 8: Overview

